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Preface

The spatial dynamics of the web of interactions between organisations conducting joint

Research and Development (R&D) activities – referred to as R&D networks – has

recently evolved to one of the ‘hot topics’ in modern research of the Geography of
Innovation literature. After the era of mainly focusing on direct, dyadic relations

between actors performing joint R&D, emphasis is nowadays increasingly shifted to

a network perspective. The latter extends the focus on dyads to the structure of indirect

relations in a network of actors and its systemic implications. Recognising the impor-

tance of indirect ties and their potential role as channels for knowledge and information

flows, the structure of these indirect ties is of major interest to understand and describe

knowledge diffusion processes. Special interest is devoted to the interplay between

spatial effects and structural effects at the network level in explaining the development

of collaborative R&D and knowledge production activities.

In this context, network analytic methods and tools have increasingly come into

play for the investigation of the spatial dimension of R&D interactions. By this, the

field has become much more interdisciplinary, particularly in methodological terms.

The more traditional spatial analysis techniques, spatial econometric approaches and

spatial interaction models – which are without doubt still essential to investigate the

spatial character of R&D networks – are increasingly augmented, sometimes merged

with network analytic approaches, mainly comprising a set of tools stemming from

graph theory. The realms of Complex Network Analysis (CNA) and Social Network

Analysis (SNA) are essential to meet the aspiration of taking into account network

structural effects that influence the spatial structure of R&D collaborations. In recent

spatial studies of R&D networks, such network analytic methods are often combined

with most recent advances in spatial analysis and spatial econometric modelling, for

instance, by relating network structural effects – as captured by network analytic

indicators – to spatial effects within a spatial econometric modelling framework.

In essence, the present volume explicitly reflects this recent development in spatial

studies of R&D collaborations and networks. It constitutes a joint product of scholars

analysing the geography of R&D networks from different angles, from distinct

disciplinary backgrounds, using a diverse set of methodologies and producing a

range of policy conclusions in diverse spatial and sectoral environments. By this, it
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represents – on the one hand – a quite unique collection of articles presenting

methodological advancements for the analysis of R&D networks from different

disciplines and – on the other hand – a distinguished anthology of novel empirical

contributions on the relationship between geography and network structures as well as

the impact of such networks on knowledge creation and innovative performance of

firms, regions or countries.

The initial stimulus for the preparation of this volume was given at the congress of

the European Regional Science Association (ERSA) in Bratislava in 2012. The

emphasis on the geography of networks and R&D collaborations has been

highlighted in various presentations and sessions of the congress. This volume is

mainly the outgrowth of works that have been presented there, extended by an

exclusive selection of invited works. The contributors come from all over the world

and from a range of different disciplines, including economists, physicists, geogra-

phers and sociologists. They provide fresh ideas on the analysis of the geography of

networks and R&D collaborations, both from a theoretical and a methodological

perspective.

At this point, I would like to thank Folke Snickars and Manfred M Fischer for

suggesting to propose such a volume to the Advances in Spatial Science series of

Springer. Further, my warmest gratitude goes to all contributors of the volume, not

only for their fine contributions in their chapters, but also for their motivating

encouragement, stimulating discussions and smooth collaboration. My thanks also

go to Barbara Fess, senior editor for economics and political science at Springer, for

her ongoing support during the production process, and to Ramya Prakash, project

manager at SPi Content Solutions – SPi Global, for her fine editing and production

work.

Thomas ScherngellVienna, Austria

December 2013
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Saint-Etienne, France; CNRS, GATE Lyon Saint-Etienne, Ecully, France

Barbara Heller-Schuh Innovation Systems Department, AIT Austrian Institute of

Technology, Vienna, Austria

Slavomir Hidas Institute for Economic Geography and GIScience, Vienna

University of Economics and Business (WU Wien), Vienna, Austria; Innovation

Systems Department, AIT Austrian Institute of Technology, Vienna, Austria

Susanne Hinzmann Friedrich Schiller University Jena, Jena, Germany

Jarno Hoekman Department of Pharmaceutical Sciences & Department of Inno-

vation Sciences, Utrecht University, Utrecht, The Netherlands

Manuela Korber Innovation Systems Department, AIT Austrian Institute of

Technology, Vienna, Austria

Rafael Lata Innovation Systems Department, AIT Austrian Institute of

Technology, Vienna, Austria

Sandra Leitner Vienna Institute for International Economic Studies, Vienna,

Austria

Camilla Lenzi Department of Architecture, Built Environment and Construction

Engineering, Politecnico di Milano, Milan, Italy

Andrea De Montis Dipartimento di Agraria, Università degli Studi di Sassari,
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Editorial Introduction



Chapter 1

The Networked Nature of R&D in a Spatial

Context

Thomas Scherngell

1.1 Rising Interest in the Geography of R&D Networks

Starting with the seminal works of Feldman (1994) and Audretsch and Feldman

(1996), the Geography of Innovation has – without doubt – evolved to one of the

main research fields in Economic Geography and Regional Science. A great deal of

theoretical and empirical literature has been followed in this area, drawing on

significant methodological advancements in spatial analysis, spatial statistics and

spatial econometrics as well as on the availability of novel, systematic information

sources on the innovative activity of firms, regions and countries. The Geography of

Innovation literature describes the role of proximity and location for innovative

activity. It is emphasised that spatial studies of innovation provide pivotal anchor

points for understanding and explaining the space-economy (see Feldman and

Kogler 2010).

Over the past decade, we have observed an increasing research interest within

the Geography of Innovation literature on the spatial dimension of networks and

collaborations between actors conducting joint Research & Development (R&D)

activities. This subfield has meanwhile become an essential and fascinating domain

for advanced research on the spatial and temporal evolution of innovation systems

at different spatial scales. Special emphasis is placed on interactions between

organisations performing joint R&D, for instance in the form of collaborative

research projects, joint conferences and workshops, or shared R&D resources in

the form of labour and capital. Such interactions have attracted a burst of attention

in the last decade, both in the scientific and in the policy sector (see, for instance,

Autant-Bernard et al. 2007). With the focus on networks and R&D collaborations,

the Geography of Innovation literature clearly has become more interdisciplinary –

in particular in methodological terms – involving a multiplicity of scientific fields

T. Scherngell (*)
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such as economics, geography, social sciences, physics and complex systems

research (see Reggiani and Nijkamp 2009).

The research focus on the geography of R&D networks has been triggered by

various considerations in theoretical and empirical literature in Economic Geogra-

phy and Regional Science in the 1980s and 1990s (see, e.g. Clark et al. 2000). When

we recapitulate the development of this literature stream, two arguments for the

focus on networks are central:

First, innovation, knowledge creation and the diffusion of new knowledge are

the key vehicles for sustained economic growth of firms, industries or regions, and,

thus, are essential for achieving sustained competitive advantage in the economy

(see, e.g., Romer 1990; Lucas 1988; Grossman and Helpman 1991). The theory of

endogenous growth and the geography-growth synthesis both consider that eco-

nomic growth and spatial concentration of economic activities emanate from

localised knowledge diffusion processes (Autant-Bernard et al. 2007). The funda-

mental neoclassical assumption of constant or decreasing returns to scale is

contested, assuming that knowledge may be subject to increasing returns because

of the externalities inherent in its production and use. In this respect, the value of the

geographically localised knowledge base increases due to network effects and the

characteristics of knowledge. Network effects come into play, since a diversified set

of local actors may gain access to new knowledge. The properties of knowledge

crucial for this argument are non-excludability – knowledge is accessible to actors

that invest in the search for it – and non-rivalry – knowledge can be exploited by

different innovating actors simultaneously (see Feldman and Kogler 2010).

Second, interactions, research collaborations and networks of actors have

become an essential element for successful innovation (see, for instance, Fischer

2001). Long viewed as a temporary, inherently unstable organisational arrange-

ment, R&D networks have become the norm rather than the exception in modern

innovation processes (Powell and Grodal 2005). Organisations must collaborate

more actively and more purposefully with each other in order to cope with increas-

ing market pressures in a globalizing world, new technologies and changing

patterns of demand. In particular, firms have expanded their knowledge bases into

a wider range of technologies (Granstand 1998), which increases the need for

different types of knowledge, so firms must learn how to integrate new knowledge

into existing products or production processes (Cowan 2004). It may be difficult to

develop this knowledge alone or acquire it via the market. Thus, firms form

different kinds of co-operative arrangements with other firms, universities or

research organisations that already have this knowledge to access it faster.

The fundamental importance of networks for generating innovations is also

reflected in the various systems of innovation concepts (see Lundvall 1992

among many others). In this conception, the sources of innovation are often

established between firms, universities, suppliers and customers. Network arrange-

ments create incentives for interactive organisational learning, leading to faster

knowledge diffusion within the innovation system and stimulating the creation of

new knowledge or the combination of pieces of existing knowledge in a new way.

Participation in innovation networks reduces the high degree of uncertainty present

4 T. Scherngell



in innovation processes, providing fast access to different kinds of knowledge, in

particular tacit knowledge (see, for example, Kogut 1988).

Science, Technology and Innovation (STI) policies have recently followed this

trend, shifting emphasis to the support of networks and collaborative arrangements

between innovating actors, in particular between universities and firms. At the

European level, the Framework Programmes (FPs) for Research and Technological

Development (RTD) are the prime examples of policy programmes to support

collaborative knowledge production across Europe. This has led to the establish-

ment of a pan-European network of actors performing joint R&D (see, e.g.,

Scherngell and Barber 2009). From this background, not only the scientific domain,

but also the policy sector shows increasing interest in network structures and

network dynamics driven by public funds. In a European policy setting, particular

interest is devoted to the geography of such networks, bearing in mind the overall

policy goal of an integrated European Research Area (ERA).

The focus of this volume is on the geographical dimension of interactions in

networks and R&D collaborations. While early contributions to the Geography of

Innovation literature highlight the localised character of knowledge production and

diffusion, one of the most fundamental questions of current research is how the

structure of formal and informal networks modifies and influences the spatial and

temporal diffusion of knowledge (see Autant-Bernard et al. 2007). As highlighted

by Reggiani and Nijkamp (2009), the foundation for an interpretation of the

economy as an interdependent complex set of economic relationships has long

been underpinned by the “first law of geography” (Tobler 1970), stipulating that

everything in space is related to everything else, but nearby things are more related

than distant things. However, advances in network theory may challenge or – at

least – extend this statement, assuming that in certain network typologies distant

things may be more related than near things.

In the Geography of Innovation literature, such considerations are referred to as

the local buzz vs. global pipelines nature of knowledge creation. This concept

describes the interplay between the interaction behaviour of localised innovating

actors, mainly driven by spatial proximity, and the access and transfer of more

distant knowledge, mainly distributed via alternative channels, often in more

formalised form as, for instance, by networks of joint R&D projects between

firms providing complementary, highly specialised knowledge (Bathelt

et al. 2004). Assuming that the relative importance of such geographically dis-

persed and more distant knowledge sources – transferred over network channels –

increases, certain network structures may be considered as essential determinants of

how knowledge diffuses in geographical space, and why some actors, regions or

countries benefit more than others due to certain network positions.

However, these theoretical considerations rest on a small base of empirical

evidence (see Feldman and Kogler 2010), which may be related to methodological

limitations as well as to a lack of data and insufficient information on different types

of R&D networks and collaboration patterns. In methodological terms, we need to

combine existing spatial analytic tools with methods coming from sociology, in

particular Social Network Analysis (SNA) (see Ter Wal and Boschma 2009), or

1 The Networked Nature of R&D in a Spatial Context 5



from physics and complex systems research (see, e.g., Reggiani and Nijkamp

2009). However, until now it remains in many aspects unclear in which way and

how these different methodological streams can complement each other in a

meaningful way.

1.2 Motivation, Objective and Structure of the Book

From this perspective, the motivation of this book is to bridge the research gap

discussed above. There are two objectives: First, the volume aims to advance the

theoretical basis and the methodological toolbox for the investigation of the geog-

raphy of networks and R&D collaborations. Second, it aims to provide novel

empirical evidence on spatial network structures and the impact of R&D networks

on knowledge creation and diffusion which is particularly to be interpreted in

respect to current European STI policies. In this sense, the books brings together

a selection of articles providing novel theoretical and empirical insights into the

geographical dynamics of networks and R&D collaborations, using new, systematic

data sources, and employing cutting-edge spatial analysis, spatial econometric and

network analysis techniques. It simultaneously provides a collection of high-level

recent research on the spatial dimension of R&D collaboration networks, and

contributes to the recent debate in Economic Geography and Regional Science on

how the structure of formal and informal networks modifies and influences the

spatial and temporal diffusion of knowledge.

Given the focus of the book on the geography of networks and R&D collabora-

tions, with the aim to methodologically advance analytic approaches for the

analysis of such networks in a spatial context, and to provide novel empirical

evidence on structure and impact of R&D networks, the volume comprises three

major parts. Initially, Part II shifts attention to methodological advancements from

an interdisciplinary perspective, while Parts III and IV are two thematic sections

focusing on structure and impact of R&D networks in a STI policy context.

Part II, entitled Analytic advances and methodology, comprises a selection of

articles providing insight into novel and advanced methodologies for the analysis of

R&D networks – formally defined as a set of nodes, most often representing

organisations, inter-linked by a set of edges, most often representing joint R&D

activities – in a spatial context. One essential element of this section is to bring

together methodological approaches from different disciplines, ranging from

advanced spatial analysis tools to network analysis approaches coming from statis-

tical physics, sociology and complex systems research. Part II highlights different

modelling approaches for investigating the spatial structure of R&D networks and

how it changes over time. From this perspective, the section significantly addresses

a research issue raised by many economic geographers and regional scientists in the

recent past, inspiring a look at alternative methodological and analytical approaches

coming from related disciplines for the spatial analysis of networks, such as, for

6 T. Scherngell



instance, Social Network Analysis (SNA) techniques (see, e.g., Bergman 2009; Ter

Wal and Boschma 2009).

Part III, entitled Structure and spatial characteristics of R&D networks, shifts
emphasis to the empirical analysis of real world R&D networks from a geograph-

ical perspective, employing advanced methods of spatial analysis, spatial econo-

metrics and network analysis, some of them introduced in Part II in an abstract

manner. By this, the articles gathered in Part III provide new insight into the

research questions raised above, as, for instance, on the effects of different forms

of proximity on the constitution of R&D networks at different spatial scales and in

different economic sectors of activity. Another common focus of the articles in this

section is that they use novel, systematic data and information sources on different

kinds of R&D networks, such as, for instance, project-based R&D networks

constituted under the heading of the European Framework Programmes (FPs).

Part IV, entitled Impact of R&D networks and policy implications, puts empha-

sis on the crucial question on how structure and dynamics of R&D networks affects

knowledge creation and inventive behaviours of innovating actors. Since modern

STI policies have shifted their focus on supporting such networks, this section

provides important implications in a STI policy context, particularly at the Euro-

pean level. This is of crucial importance, since the realisation of an integrated ERA

is one of the major goals of the STI policy strategy of the European Commission

(see, e.g., Hoekman et al. 2013). Networks of actors performing joint R&D should

span the territory of the EU – stimulating the circulation of knowledge and

researchers in a Europe-wide system of innovation – and, thus, the analysis of the

spatial dimension of European R&D networks shows direct European policy

relevance. In this sense, the articles gathered in Part IV address the essential points:

how to interpret results from empirical investigations of spatial R&D networks in a

STI policy context, and how potential policy implications and measures may be

derived.

1.3 Overview of the Chapters

As mentioned in the previous section, Part II of the volume focuses on analytic and

methodological advances – from an interdisciplinary perspective – for the investi-

gation of R&D networks and R&D collaborations in a spatial context. After this

introductory chapter, Part II begins with a contribution by Autant-Bernard and

Hazir (Chap. 2) focusing on different modelling approaches and underlying con-

ceptions for network formation in a geographical context. The article provides a

review – as a reasonable starting point for Part II – on recent works that investigate

network formation in space and time but reveal a high variation in terms of

methodological and analytical approaches. In doing so, the authors discuss the

different aspects of the relationship between geography and networks, and discuss

in some detail the distinct methodological approaches and their capability to

investigate this relationship. Chapter 3 authored by De Montis, Caschili and Chessa

1 The Networked Nature of R&D in a Spatial Context 7
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shifts attention to a complex systems research perspective for investigating spatio-

temporal network dynamics, in particular for spatial systems with a very large

number of nodes and vertices. The authors present a state-of-the art summary in the

field of complex network analysis, laying special emphasis on the issue of com-

munity detection in networks which is of crucial interest when describing R&D

network structures (see also Chap. 9 of this volume by Barber and Scherngell).

Communities, defined as homogenous, densely connected sub-networks, are a key

element for understanding the network structure as a whole. The authors demon-

strate this by means of a case study employing a network community detection

approach to study the problem of regionalisation on the island of Sardinia (Italy).

Part II continues with two contributions introducing two distinct analytical

approaches for the investigation of spatial network structures that have initially

been applied mainly in an a-spatial context. Initially, Broekel and Hartog (Chap. 4)

focus on exponential random graph models (ERGM) to analyse the determinants of

cross-region R&D collaboration networks. The authors lay special emphasis on

advantages and disadvantages of this approach in comparison to a spatial interac-

tion modelling perspective that is often used to disentangle the influence of differ-

ent types of proximities on R&D network structures (see, e.g., Scherngell and

Barber 2009). The solidity of the ERGM approach is demonstrated by means of

an illustrative example focusing on the structure of cross-region R&D networks of

the German chemical industry. After that, Sebestyén and Varga (Chap. 5) develop a

novel index, labelled Ego Network Quality (ENQ), for measuring the quality of

network position and node characteristics in spatial R&D networks. The authors

demonstrate that the ENQ is an integrated measure for the network position of a

specific node in a spatial context, very much resembling to the solution applied in

the well-established index of eigenvector centrality in an a-spatial context. Robust-

ness and weighting schemes of the index are tested via simulation and econometric

techniques.

Chapter 6, authored by Chun, discusses the notion of network autocorrelation,

referring to a situation when network links from a particular origin may be spatially

autocorrelated with other flows that have the same origin, and, similarly, network

links into a particular destination may be correlated with other flows that have the

same destination. The author argues that this invalidates the independence assump-

tion of network flows, raising the need for a proper modelling method which can

account for network autocorrelation. The eigenvector spatial filtering method is

presented as an effective way to incorporate network autocorrelation in linear

regression and generalised linear regression models. Chun illustrates these methods

with applications to interregional commodity flows and interstate migration flows

in the U.S.

Part II closes with a contribution by Crespo, Suire and Vicente (Chap. 7) on the

assortativity and hierarchy in localised R&D collaboration networks. By this, the

authors focus on two important structural properties and present a combination of

two SNA measures, degree distribution and degree correlation, to study whether

such localised networks are allowed to avoid technological lock-in.
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The contributions gathered in Parts II and III comprise a selection of articles

providing novel empirical evidence on real world R&D networks from a spatial

perspective. Initially Part III shifts attention to the investigation of spatial network

structures and dynamics. The section opens with a contribution by Lata, Scherngell

and Brenner (Chap. 8) that puts emphasis on observing integration processes in

European R&D from a network perspective. The authors investigate co-patent and

project based R&D networks, and estimate the evolution of separation effects over

the time period 1999–2006 that influence the probability of cross-region collabo-

rations in these distinct networks. They use Poisson spatial interaction models

accounting for spatial autocorrelation among network links. Chapter 9, authored

by Barber and Scherngell, employs community detection (see Chap. 3 of this

volume) to characterise the structure of the European R&D network using data on

R&D projects funded by the fifth European FP (FP5). Communities are subnet-

works whose members are more tightly linked to one another than to other members

of the network. The identified communities are analysed with respect to their spatial

distribution and by means of spatial interaction models.

Chapter 10, authored by Leitner, Stehrer and Dachs, focus on the global R&D

network, proxied by R&D investment flows between countries. The authors analyse

internationalisation patterns of business R&D for OECD countries and identify

specific home- and host-country characteristics that are conducive or obstructive to

cross-border R&D expenditure of foreign affiliates.

Chapters 11, 12 and 13 investigate spatial aspects of different networks consti-

tuted under the heading of the FPs at an organisational and R&D project specific

level. Initially, Reinold, Paier and Fischer (Chap. 11) explore determinants of inter-

organisational knowledge generation – proxied by joint publications or patents

resulting from joint FP projects – by means of a binary response model using

novel data from a survey among FP5 participants. Chapter 12 by Hazir presents an

empirical investigation on the formation of multilateral FP collaboration networks

in the Biotechnology field employing exponential random graph models (ERGM).

The author focuses on the question how geography and heterogeneity in institution

types affect the way organisations form R&D networks. Chapter 13, authored by

Vicente, Balland and Suire, completes Part IV adopting a SNA perspective to

analyse collaborative projects funded in FP5 and FP6. They study the properties

both of the network of organisations and the network of collaborative projects,

focusing on the particular case of Global Navigation Satellite Systems (GNSS) in

Europe.

Part IV turns to the impact of R&D networks on knowledge creation and

inventive behaviours of organisations, and its consequences for STI policy. As a

starting point, the contribution of Hoekman and Frenken (Chap. 14) frames the

geography of scientific research networks laying special emphasis on empirical

studies that evaluate policy efforts to support the creation of ERA. The authors

introduce a logic of proximity, intended to provide researchers with a way to

coordinate their networks, and a logic of stratification, intending to provide path-

ways for researchers to get involved in networking. The chapter presents an

overview of recent empirical findings to illustrate the interplay between proximity
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and stratification of European R&D networks, and discusses potential implications

for future ERA policies. Chapter 15 by Wanzenböck and Heller-Schuh connects

very well to this discussion, as it stresses the importance of specific network

positions to gaining access to knowledge located further away in geographical

space. They analyse the position of regions in the European network of R&D

collaboration within the FPs in the time period 1998–2006. By means of a panel

version of the Spatial Durbin Model (SDM), the authors identify determinants that

push a region in a specific, favourable network position to gain access to region-

external knowledge.

Chapters 16 and 17 are among the first contributions that aim to establish a direct

link between network structures and network impact in terms of knowledge crea-

tion and inventive behaviours of innovating organisations. Chapter 16 by Breschi

and Lenzi analyses R&D networks among 331 US cities using patent data for the

period 1990–2004. The authors investigate the impact of network participation in

driving the spatial diffusion of scientific and technological knowledge. They pro-

pose new indicators that are intended to capture US cities’ propensity to engage not

only in local, but also global, knowledge exchanges, and relate these propensities to

cities’ inventive and economic performance. The contribution of Hidas, Wolska,

Fischer and Scherngell (Chap. 17) is in a similar spirit in that it aims to explain

inventive performance by means of network participation. The authors identify and

measure effects of research collaboration networks on knowledge production at the

level of European regions, using a panel data SDM relationship for empirical

testing.

Chapters 18 and 19 focus on different types of policy induced R&D networks,

and the impact of policy initiatives on network formation and innovative outcome.

Cantner, Graf and Hinzmann (Chap. 18) analyse the impact of governmental

funding on cooperation networks in Germany under the heading of the so-called

Leading-Edge Cluster Competition. The authors identify the extent of policy

influence for selected clusters on the network of the most important cooperation

partners, its geographic reach, and network dynamics. Chapter 19 by Korber and

Paier provides an alternative approach to investigate the relationship between STI

policy funding schemes, R&D collaborations and innovative performance. The

contribution presents an agent-based simulation model to explore the relationship

between a specific type of policy-induced networking, so called competence cen-

tres, and innovative outcome in the Viennese Life Sciences innovation system.

The volume closes with Chap. 20, which provides a synthesis of the main

empirical results, methodological advancements and policy implications. Further-

more, ideas for a future research agenda are presented, emphasising the need for

further crossing of disciplinary boundaries for the future investigation of the spatial

dimension of R&D networks and R&D collaborations.
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Part II

Analytic Advances and Methodology



Chapter 2

Network Formation and Geography:

Modelling Approaches, Underlying

Conceptions, Recent and Promising

Extensions

Corinne Autant-Bernard and Çilem Selin Hazir

Abstract Due to the strong polarisation of economic activities in space and rise in

collaborative behaviour, increasing attention has recently been devoted to the

relationship between geography and network formation. The studies conducted

on this topic reveal a high variation in terms of methodologies. Putting special

emphasis on R&D networks, the aim of this chapter is to review the different

methods and assess their ability to address the issues raised by the relationship

between network and space. We first discuss the different facets of the relationship

between geography and networks. Then, we detail the methodological approaches

and their capability to test each effect of geography on network formation. We

argue that the effect of distance on dyads have received the major attention so far,

but the development of block modelling and top-down approaches opens new

research perspectives on how distance or location might affect formation of more

complex structures. Moreover, recent improvement in temporal models also offers

opportunities to better separate spatial effects from that of influence over time.

2.1 Introduction

In the field of economics, the relationship between geography and network forma-

tion attracts attention in order to understand how knowledge flows in a space of

social interactions relate to regional growth and innovation. So far a number of

studies have been conducted to elucidate this relationship. Even a glimpse on these

studies reveals a high variation in terms of methodologies.
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On the one hand, this variety stems from the fact that the term “geography”
contains a number of meanings in it. Sometimes geography is associated with

physical separation, sometimes it refers to locations as a material and relational

context for economic action, and sometimes geographical units themselves are

considered as nodes in a network. The way it is conceived, in turn affects the way

it is related to network formation and constrains model choices as some models are

not capable of testing all kinds of effects. On the other hand, the variety in

methodologies results from addressing the same phenomenon; i.e. formation of a

network, through different analytical perspectives.

From a “learning perspective” these differences enclose invaluable information

on the evolution of the way that the research community has conceived and

addressed the geographical dimension of network formation, and on possible future

directions. In this regard, this chapter will try to disclose this information by

elaborating how different meanings associated to geography can yield different

conceptualizations of geography-network relationship. Hence in Sect. 2.2 we will

address alternative ways of relating geography to network formation. In Sect. 2.3,

we will try to identify main distinctions between different methodologies and

compare models that are widely used in the study of spatial dimension of R&D

networks. Our aim here is not to provide a full-fledged list and a hierarchy of

network formation models but rather to highlight main differences in analytical

approaches putting emphasize on their ability to address the issues raised by the

relationship between network and space. Finally, we will review some recent

methodological advances that loom large regarding their potential future contribu-

tions to understand knowledge flows in space.

2.2 Relating Geography to Network Formation

2.2.1 A Tie Covariate: Physical Distance

One of the meanings associated to geography is the physical distance, which is the

relative position or physical separation of two entities. Under this definition, space

is perceived to be homogenous and exogenous to the network formation process

due to the fact that regardless of the configuration of the network, the physical

distance among nodes remains unchanged. Then, the role of geography is concep-

tualized as the effect of an attribute of a possible tie; i.e. the length of a tie.

High levels of this attribute is hypothesized to have a negative effect on the

utility out of being connected1 due to the fact that there exists a tacit component of

knowledge (Polanyi 1966) and some interaction is necessary for its transmission.

Therein, physical proximity is considered to be a facilitator of face-to-face

1As shall be seen in the succeeding section, this utility either refers to a utility obtained out of a tie

(see binary choice models), or to the utility out of the overall network (see ERGM).
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interactions, which in turn eases the transmission of tacit knowledge (Feldman and

Florida 1994) and hence increases the utility of being connected.2 Also, physical

proximity is assumed to increase this utility via enabling cross-fertilization of ideas

(Feldman and Florida 1994) and timely inflows of information (Feldman 1993) and

by decreasing the cost of collaboration (Hoekman et al. 2009).

However, the fact that physical distance is just one of the many dimensions of

separation (Boschma 2005) and in particular the embeddedness of economic

relations between firms and individuals in social relations (Granovetter 1985) has

modified this hypothesis. Thus, it has become a matter of interest to know whether

physical distance still plays a role on the utility of being connected when the effects

of other dimensions of separation are controlled for.

2.2.2 A Node Covariate: Local Context

Another meaning that is associated to geography is the physical context that

economic agents are embedded in. Once the context that embraces networking

agents is taken into account, then the network becomes embedded in a physical

space. One way to relate this embeddedness to network formation is to consider the

physical space as an exogenous setting, which affects the attractiveness of the

organizations as potential partners or their capacity to establish connections. In

that case, the role of geography is conceptualized as the effect of a node attribute on

network formation. In the literature, this effect is formulated in a number of ways

such as the effect of agglomeration economies, knowledge externalities, system of

innovations, or innovative “milieu”.

Although, considering geography as an exogenous node attribute simplifies the

analytical processes to study network formation; obviously the local processes and

network processes are not mutually exclusive. On the one hand, the black-box of

advantages that a location provides might also include the outcomes or impacts of

network activity of its constituents. On the other hand, some local processes might

not only work through increasing node attractiveness or capacity but also through

creating tie dependence as will be discussed in the sequel.

2 However, if proximity is often associated with the tacit dimension of knowledge, we must avoid

an overly simplistic view (Massard and Mehier 2009). There are probably complementarities

between tacit and codified knowledge, any two being transmitted both locally and remotely. The

link between proximity and knowledge can then lie in the way of combining the tacit and codified

nature of knowledge.
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2.2.3 A Factor Affecting Tie Dependence: Physical Distance
and Local Context

Pattison and Robins (2002) argue that each network tie could be associated with a

“social locale”, which refers to “a complex relational entity that links the geo-
graphical, social, cultural and psychological aspects of the context for social
action”. They argue further that these social locales overlap with each other due

to the fact that “the outcome of processes in one locale may have some impact on
processes within another locale”. Therein, a local context might be considered as a

joint social locale for ties created within it, as they all share a number of

intermingled local processes such as social, economic, political, historical pro-

cesses. The outcomes of these processes might be heterogeneous across space and

they may create, enhance or even dampen dependencies among ties. Similarly,

being spatially proximate could be associated with overlaps in social locales as

being spatially proximate might mean sharing similar local features.

Hence, in this case the role of geography can be conceptualized as the effect of

tie dependence on network formation. Unlike considering the role of geography as

the effect of a tie attribute, in this conceptualization the specific role played by

distance is not disentangled from the role of other types of proximities or processes

that co-exist or interact with geographical proximity.

2.2.4 Regions as Nodes Themselves

As a matter of fact, geographical units may themselves constitute the nodes in a

network. In the case of networks representing economic relations, regions as nodes

symbolize the aggregate behaviour of individuals. Hence, all three types of roles

discussed above might be relevant to study the inter-regional networks. The role

played by the distance between two regions or existence of a common border might

again be considered as an exogenous tie property. Regional properties that might

affect the aggregate performance of individuals can be considered as exogenous

node attributes under the assumption that network processes and these properties

are mutually exclusive. Finally, contiguity or co-location in a wide geographic area

can be conceptualized as a factor affecting overlaps in social locales.

2.3 Approaches to Model Network Formation

Networks attract attention from a wide range of fields like medicine, biology,

computer science, sociology, political science, economics, etc. Accordingly, a

number of different analytical approaches have been suggested to model their

formation. A major distinction among these approaches stems from considering
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the network as an outcome of “choice” or “chance” (Jackson and Wolinsky 1996).

In the first view, formation of a network is explained on the basis of individual

incentives (costs and benefits) (Jackson and Wolinsky 1996). A number of strategic

and game theoretic models have been developed along this view. On the other hand,

graph-theory has bestowed various random graph models in line with the second

view, where the observed network is considered as just one realization among all

possible network configurations. Beside random graphs, complex network analysis

has been developed along the same line. Finally, the usual econometric models and

spatial econometrics have also been applied to study the network, where both views

are in play.

These approaches may also be classified into two as static approaches and

dynamic approaches. The former works on a snapshot of the network; whereas

the latter considers the evolution of the network in time. Among those, some

models allow creation of new nodes in time as in the case of preferential attachment

model (Barabási and Albert 1999). Some others allow studying the dynamics

stemming from creation and dissolution of ties among a fixed set of nodes in time

as in the case of stochastic actor-based models (Snijders et al. 2010).

As a third classification, these approaches can be considered in two groups as

top-down approaches and bottom-up approaches. Top down approaches focus on

the topology of the network as a whole and try to identify global features rather than

modelling the network on the basis of individuals. Complex network analysis or

block modelling (Nowicki and Snijders 2001), where the aim is to identify groups,

members of which are equivalent in terms of their connection patterns, may

illustrate this approach. On the other, hand bottom-up approaches focus on pro-

cesses taking place in components of the network. Therein, a further distinction can

be made among bottom-up approaches with respect to the types of components that

they focus. In some approaches the network configuration is explained by focusing

on the behaviour of actors, ex: stochastic actor-based models (Snijders et al. 2010).

Whereas in some others the focus is either on formation of a single tie or a local

pattern (a subset of ties).

Another distinction among these approaches could be made with respect to

underlying assumptions on tie dependence. Some models base on the assumption

that the stochastic processes behind formation of ties work independently. Some

others assume that the outcomes of these stochastic processes are correlated. Finally

a third group assumes that some ties are realized jointly through the same stochastic

process.

In the sequel, we will focus mainly on the empirical studies that investigate the

role of geography in R&D networks. We will discuss them under three headings:

network as the equilibrium of choices; network as an outcome of choice and

random effects, and network as an outcome of a random process. We will try to

highlight the differences in the analytical process among these models in terms of

the above-mentioned criteria and their capacity to handle alternative ways of

relating geography to network formation
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2.3.1 Network as the Equilibrium of Choices

As mentioned earlier the game theoretic approach considers the network as the

outcome of individual choices. Among these models the seminal work by Jackson

and Wolinsky (1996) has considerable influence on both theoretical and empirical

work on the geographical dimension of R&D networks. Their model, known as the

connections model, explains the formation of a network on the basis of individual

incentives (costs and benefits) and bases on the idea that agents do not only benefit

from those they are linked directly; but also from those they are linked indirectly.

The benefit they can obtain from others decreases with distance; but direct links are

costly implying a trade-off between the benefits and costs of a direct link.

The spatial extensions of this model is provided by Johnson and Gilles (2000)

and Carayol and Roux (2007). In these extensions the role of geography is inves-

tigated in a static network, where the number of nodes is fixed. Geography is

considered as the geographical distance and its role is hypothesized as an exoge-

nous factor affecting the cost of maintaining a link. Based on this conception on the

geography-network formation relationship, these theoretical models suggest that

for a wide range of intermediary values of decay in transmission of knowledge, a

particular stable network structure called “small world” emerges. Carayol and Roux

(2007) also provide some empirical evidence by fitting the model to actual

co-inventions that took place during 1977–2003 with at least one inventor located

in France.

2.3.2 Network as an Outcome of Choice and Random Effects

While in the game theoretic models the network is considered as the equilibrium of

individual choices, in some statistical models used to study connections among

nodes we see an expression of the utility that an individual can obtain out of its

choice and some notion of randomness in making that choice. In the sequel, these

models will be explained briefly and their capacity to integrate the geographical

dimension will be discussed.

Binary Choice Models. The use of Binary Choice Models illustrates the applica-

tion of usual econometric tools to study network formation (Geuna 1998; Powell

et al. 2005; Mairesse and Turner 2005; Autant-Bernard et al. 2007; Paier and

Scherngell 2008). These models aim at explaining the factors that affect realization

of a single tie; hence they analyse formation of a network by focusing on its

smallest unit. Factors that are symmetric for a pair of nodes, i.e. tie attributes, are

the easiest ones to test with these models. Some practical problems arise in studying

the effect of node attributes since the explanatory variables have to be symmetric

and hence insensitive to the changes in the order of indexation. Finally, these

models allow studying the effect of the observed network configuration on tie

formation but under the assumption that it is an exogenous factor. This stems
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from the fact that in these models realization of a tie is supposed to be a Bernoulli

process, meaning that ties are realized independently of each other.

Therein, the capacity of Binary Choice Models to investigate the role of geog-

raphy mainly lies in the ability to study how physical distance affects the proba-

bility that a tie is created given the effect of other factors. This ability complies with

the research interest to demarcate the role of geographical proximity from that of

other proximity dimensions. In these models geography may also be included as a

node attribute as long as they are defined symmetrically for the pair of nodes.

Finally, due to the tie independence assumption, with these models it is not possible

to study the role of geography in terms of tie dependence.

Poisson Regression Models and Gravity Models. The analytical process and the

assumptions in Poisson Regression Models are the same as those in Binary Choice

Models except for the fact that the objective is to explain the intensity of interaction

among a pair of nodes rather than its existence (Powell et al. 1996). Hence, they

allow studying the role of geography on the intensity of interactions, where this role

could be introduced as a tie or node property (Mairesse and Turner 2005; Frachisse

2010). Once distance is accounted for, Poisson models can be interpreted as gravity

models. As in the case of Poisson Regression Models, the objective in Gravity

Models is to explain the strength of interaction among two spatial units. Hence, the

approach undertaken to explain for the network builds upon ties among pairs. This

type of models can be applied to individual choices or aggregated behaviour. It is

worth noticing however that much attention has been devoted so far to study inter-

regional networks, hence focusing on aggregated data.

The use of these models illustrates an application of spatial analysis techniques

to study network formation. The earlier studies using Gravity Models assume that

the stochastic process behind tie formation works identically and independently;

i.e. any pair of ties, among the same pair of nodes or not, are independent (Ponds

et al. 2007; Maggioni et al. 2007; Scherngell and Barber 2009; Hoekman

et al. 2010). More recent applications (Scherngell and Lata 2011) take the spatial

autocorrelation among flow residuals into account and corrects for this by using

eigenvector filtering. Hence, the extension with spatial filtering rests upon weaker

assumptions on tie dependence since it handles the correlation among ties sharing

the same node.

As Gravity Models include two mass terms and a separation function; they allow

studying the role of geography as a node itself with some attributes and as a tie

attribute. The extensions dealing with spatial autocorrelation might allow control-

ling for correlations among intensity of interactions resulting from the topology of

regions. Hence, the specific role played by the physical distance might be identified

better as suggested in Chap. 11 of this book.

Stochastic Actor-Based Models. Stochastic Actor-based Models are statistical

models to study tie dynamics in networks of fixed size (Snijders et al. 2010). As

the name implies they focus on the behaviour of actors and model the formation of

the network by means of changes that actors make in their outgoing ties. These

changes are explained by means of two functions. The former is the rate function
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showing the frequency at which a change occurs. Whereas, the latter refers to the

objective function, which shows the probabilities of alternative courses of action

given the opportunity to make a change. This function is expressed in terms of

“effects”, which are tendencies (like reciprocity, closure, multi-connectivity etc.)

taking place locally.3 Both functions may depend on network position of actor and

some actor attributes.

These models assume that actors act independently; hence the changes they

make are not coordinated yet sequential. However, as the outcomes of their

decisions change each other’s environment, in time their actions depend on each

other. Thus, unlike Binary Choice Models, where for each pair of agents the rest of

the network is considered exogenous simultaneously; the sequential nature of

Stochastic Actor-based Models allow handling dynamism in choices and depen-

dencies on the environment.

Geographical dimension might be introduced in these models through both the

rate and the objective function. A rate function differentiated with respect to

location of actors might enable spatial heterogeneity in frequency of tie changes.

On the other hand, the objective function might be modified either by integrating

the distance as a dyadic covariate (Ter Wal 2013), or location as a node attribute

(Balland 2012) which in turn might be used to study the effect of co-location and

some network effects arising from being co-located.

2.3.3 Network as an Outcome of a Random Process

As mentioned earlier the graph theoretic approaches consider the observed network

as an outcome of a random process. Hence, these approaches do not base on utility

functions of micro agents but on the distribution of probabilities. Nevertheless, it

should also be noted that although a utility function is not specified in these models,

the distribution of probabilities can be constrained using a theoretical basis on

preferences of agents.4 Below, graph theoretic approaches used to study geograph-

ical dimension of R&D networks are discussed.

Exponential Random Graph Models (ERGM or p*). ERGMs are (Frank and

Strauss 1986; Wasserman and Pattison 1996) more recent types of random graph

3 These effects are similar to the “local configurations” in Exponential Random Graph Models that

will be discussed in the sequel.
4 As shown by Park and Newman (2004) random graph models can be expressed as a constrained

maximum entropy problem; which maximizes the entropy in the probability distribution of

observing a particular network configuration. In the earlier random graph models (Erdös and

Renyi 1959) the problem is constrained only by the number of edges in the network and a

probability distribution which assigns the same probability to all networks with the same number

of edges is obtained. However, in more recent models as shall be seen in subsection on Exponential

Random Graph Models, the preferences of actors for homophily, central agents, closure, etc. can

be used as additional constraints by defining local configurations accordingly.
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models. They allow studying networks with a fixed set of nodes. However, as will

be discussed in Sect. 2.4, temporal extensions that allow dynamism in terms of tie

creation and dissolution have recently become available. The idea behind these

models is that the observed network is just one realization of all possible configu-

rations of connections among a given set of nodes. Hence, as stated by Cranmer and

Desmarais (2011), there is a “conceptual leap” from the Binary Choice and similar

models to ERGM. While in the former the vector of interest is a series of values

drawn from a univariate distribution; in ERGM it is considered as a single draw

from a multivariate distribution. This leap allows relaxation of the tie-independence

assumption and provides ERGMs capacity to tackle with even complex dependence

structures among ties (see realization dependence assumptions by Pattison and

Robbins 2002).

An ERGM explains the formation of a network by means of local configurations,

which are some small and regular patterns. Among all possible network configura-

tions it gives a higher probability to those that are similar to the observed network in

terms of these small structures. In defining these local configurations, ERGM is

capable of differentiating ties and nodes with attributes (Robins et al. 2007).

Therein, the capacity of ERGMs to investigate the role of geography is three-

folds. First, it may be studied as the role of physical distance by means of a distance

interaction function (Daraganova et al. 2012). Second, geography may be included

as a node attribute. Third, geography can be considered as a spatial setting that

imposes limits on tie dependence, hence on local configurations (Pattison and

Robbins 2002). The studies by Broekel and Hartog in Chap. 4 and Hazir in

Chap. 13 illustrate the applications of these models on R&D networks.

Preferential Attachment Model. Preferential Attachment Model (Barabási and

Albert 1999) is a graph theoretical model explaining dynamic networks with

growing number of nodes. The model in its original form explains the formation

of a network as a process where the degrees of existing nodes increase proportional

to their magnitude and result in a scale-free degree distribution. Hence, it considers

a single factor; i.e. degree affinity of agents, to explain for the network via

explaining one of its macro properties; i.e. its degree distribution. The extension

by Vinciguerra et al. (2010) integrates the effect of geographical distance and

co-location in the same country to the probability that a node receives connections

as the network grows.

Complex Network Analysis (CNA). While the models reviewed so far aim at

explaining the formation of a network by means of micro processes, Complex

Network Analysis focuses on the overall topological structure of complex

networks. Hence CNA aims at identifying and explaining key global features like

degree distribution, diameter, clustering, and communities.

A number of studies revealed that R&D networks display a scale-free degree

distribution, “small-world” property in terms of diameter and high “clustering”

(Goyal et al. 2006; Newman 2001; Gay and Dousset 2005). On the one hand,

theoretical models (Johnson and Gilles 2000; Carayol and Roux 2007), the above

mentioned spatially extended preferential attachment model, and possibly ERGMs
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illustrate how a model explaining the effect of geography on micro processes can

also explain for these global properties. On the other hand, CNA adopts a macro

perspective to study the spatial dimension of such properties. The study by Barber

and Scherngell in Chap. 10 illustrates studying the heterogeneity in the spatial

configuration of communities in an R&D network. Whereas, the study by De

Montis et al. in Chap. 3 illustrates the use of CNA to investigate whether similar

geographical contexts give rise to similar global network properties or not.

2.4 Conclusions and Future Directions

In this chapter, we considered the relationship between geography and network

formation but our focus was on how to investigate this relationship. Hence, we

reviewed different meanings of geography and different conceptualizations of this

relationship. Then we provided an overview on different approaches through which

network formation is explained. Our aim was neither to provide a complete list or a

hierarchy of network formation models nor to identify best models. Rather we were

interested in two aspects. First, leaving all the practical issues and formal definitions

of models aside, we aimed at identifying the grand avenues that a researcher can

follow in studying network formation. We identified that whether to consider it as

an outcome of choice or chance; whether to consider it as a dynamic or a static

process; whether to explain it from bottom-up or top-down; whether to study its

complex interdependencies or simplify it are the major decisions to be made by the

researcher in making a model choice. Second, all these choices suggest a different

capacity to study the role of geography. Hence, we reviewed applied studies with a

particular interest on those on R&D networks to highlight these analytical differ-

ences, the evolution of analytical frameworks (if any) and to identify future

directions.

One of the main conclusions that could be derived from this review is that so far

the research community made use of mainly bottom-up approaches to study the role

of geography in formation of R&D networks. In other words, the emphasis is given

to explain how geography affects the formation processes at the micro level.

Although global topological features of these networks have attracted attention,

spatial heterogeneities in these global features or heterogeneities in spatial patterns

of components of networks have received less attention. Apart from those tech-

niques used by Barber and Scherngell in Chap. 10 and by De Montis et al. in

Chap. 3; block modelling might also be used to study the relationship between

geography and network components, members of which are equivalent in terms of

their connection patterns.

Another conclusion could be derived on the evolution in the analytical processes

that are adopted to study the role of geography in formation of R&D networks.

While there is not a clear cut distinction, it is noteworthy that the community has

recently shown interest in models that can allow dependence among ties. This

enables demarcating the effect of dependence from other factors of interest; hence
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improves estimates for the role of geography. Furthermore, the ability of these

models to handle tie dependence results in models which can explain the global

topology of the network (such as clustering, degree distribution, etc.) as well as the

local process in focus. However, the relationship between geography and tie

dependence is far from being exploited. So far the effect of distance on dyads

have received the major attention, leaving how distance or location might affect

formation of more complex structures than dyads aside.

A third conclusion stems from the temporal dimension of networks. As a matter

of fact most applied studies consider an R&D network as a static object, where

neither new nodes are added nor ties created or dissolved. Applications of stochas-

tic actor-based models relaxed this assumption and considered the tie dynamics

among a fixed set of nodes. These models indeed possess a capacity to analyse not

only the determinants of tie formation but also tie dissolution by means of an

endowment function (Snijders et al. 2010). Hence, these models may well be

used to study the role of geography on tie dissolution. Although not applied to

study the geographical dimension of R&D networks some recent temporal exten-

sions of ERGM also suggest similar possibilities. Among these Hanneke

et al. (2010) provides Temporal Exponential Random Graph Model (TERGM),

which allows studying the evolution of a network of fixed size. Whereas, Krivitsky

and Handcock (2010) enables separating tie formation and dissolution processes in

a TERGM.

Apart from these some other model extensions suggests additional explanatory

capacity for the field. Among these, extension of ERGMs for valued networks

(Krivitsky 2012) stands as another tool to study the effect of geography on the

intensity of connections, which has been studied so far by means of Poisson

regression models and gravity models. The ability of this tool to handle tie depen-

dence might be useful for better treatment of network effects and demarcate the role

of geography more properly. In addition to that, Steglich et al. (2010) extended

Stochastic Actor-based Models to distinguish partner selection from social influ-

ence in a dynamic network. This extension basis on the idea that two actors showing

the same behaviour might be collaborating due to similarity in their behaviour, or

one gets similar to the other as a result of being connected. The ability to separate

those two processes might be valuable in better demarcation of spatial effects from

that of influence over time.

In addition, by improving our understanding of network formation and evolu-

tion, all these developing techniques may also contribute to a better comprehension

of the mechanisms that generate network outcomes. A growing literature tries to

understand how some of the particular topological network properties (such as

density, clustering, connectivity of the network, degree distribution of nodes or

degree assortativity) influence economic performances at the regional level

(Breschi and Lenzi 2011; Crespo et al. 2013). However, as argued by Ahuja,

Soda and Zaheer (2012), “without a comprehension of the logic that drives network

creation, scholarly understanding of their outcomes remains incomplete” (p. 34). In

particular, as it is difficult to identify whether the network structure implies the

outcome or the reverse, we have to consider both aspects together. To this respect,
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the contributions of spatial econometrics to the field of network analysis may

extend beyond gravity models as suggested by (Autant-Bernard 2012). Spatial

tools can indeed provide valid instruments allowing endogenous effects to be

separated from exogenous ones (see for instance Bramoullé and Fortin 2009). In

the same line, the temporal extensions of the above reviewed network approaches

are also very promising in order to cope with this causality problem.

Finally, it is a matter of fact that model choices are strongly constrained by the

nature of data and data availability. Assumptions of a model might be severe or

reasonable depending on the nature of the data and on the properties of the

economic process through which it is generated. Hence, there is no one-for-all

answer on how to study the spatial dimension of network formation.
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Risque, les Politiques Économiques et l’Emploi working papers 09-13. http://www.cirpee.org/

fileadmin/documents/Cahiers_2009/CIRPEE09-13.pdf

Breschi S, Lenzi C (2011) Net and the city. Co‐invention networks and the inventive productivity

of US cities, Mimeo. http://cep.lse.ac.uk/seminarpapers/09-12-11-SB.pdf

Carayol N, Roux P (2007) The strategic formation of inter-individual collaboration networks:

emprical evidence from co-invention patterns. Annales d’Economie et de Statistiques

87–88:75–301

Cranmer SJ, Desmarais BA (2011) Inferential network analysis with exponential random graph

models. Politi Anal 19(1):66–86

Crespo J, Suire R, Vicente J (2013) Lock-in or lock-out? How structural properties of knowledge

networks affect regional resilience. J Econ Geogr, (forthcoming). http://papers.ssrn.com/sol3/

papers.cfm?abstract_id¼2034901

Daraganova G et al (2012) Networks and geography: modelling community network structures as

the outcome of both spatial and network processes. Soc Netw 34(1):6–17

Erdös P, Renyi A (1959) On random graphs. I. Publicationes Mathematicae Debrecen 6:290–297

Feldman MP (1993) An examination of the geography of innovation. Ind Corp Change

2(3):451–470

26 C. Autant-Bernard and Ç.S. Hazir
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Goyal S, van der Leij MJ, Moraga‐González JL (2006) Economics: an emerging small world.

J Politi Econ 114(2):403–412

Granovetter M (1985) Economic action and social structure: the problem of embeddedness. Am J

Sociol 91(3):481–510

Hanneke S, Fu W, Xing EP (2010) Discrete temporal models of social network. Electron J Stat

4:585–605

Hoekman J, Frenken K, van Oort F (2009) The geography of collaborative knowledge production

in Europe. Ann Reg Sci 43(3):721–738

Hoekman J, Frenken K, Tijsen RJW (2010) Research collaboration at a distance: changing spatial

patterns of scientific collaboration within Europe. Res Policy 39:662–673

Jackson MO, Wolinsky A (1996) A strategic model of social and economic networks. J Econ

Theory 71:44–74

Johnson C, Gilles R (2000) Spatial social networks. Rev Econ Des 5:273–299

Krivitsky PN (2012) Exponential-family random graph models for valued networks. Electron J

Stat 6:1100–1128

Krivitsky PN, Handcock MS (2010) A separable model for dynamic networks. arXiv:1011.1937v1

Maggioni MA, Nosvelli M, Uberti TE (2007) Space vs. Networks in the geography of innovation:

a European analysis. Pap Reg Sci 86:471–493

Mairesse J, Turner L (2005) Measurement and explanation of the intensity of co-publication in

scientific research: an analysis at the laboratory level. NBER working paper 11172

Massard N, Mehier C (2009) Proximity and innovation through an “Accessibility to Knowledge”

Lens. Reg Stud 43(1):77–88

Newman MEJ (2001) Clustering and preferential attachment in growing networks. Phys Rev E

64(2):025102

Nowicki K, Snijders T (2001) Estimation and prediction for stochastic blockstructures. J Am Stat

Assoc 96:1077–1087

Paier M, Scherngell T (2008) Determinants of collaboration in European R&D networks: empir-

ical evidence from a binary choice model perspective. NEMO working paper #10

Park J, Newman MEJ (2004) The statistical mechanics of networks. Phys Rev E 70(6):066117

Pattison P, Robins G (2002) Neighbourhood-based models for social networks. Sociol Methodol

32:301–337

Polanyi M (1966) The tacit dimension. Doubleday, Garden City/New York

Ponds R, van Oort F, Frenken K (2007) The geographical and institutional proximity of research

collaboration. Pap Reg Sci 86(3):423–443

Powell WW, Koput KW, Smith-Doerr L (1996) Inter-organizational collaboration and the locus of

innovation: networks of learning in biotechnology. Adm Sci Q 41(1):116–145

Powell WW et al (2005) Network dynamics and field evolution: the growth of inter-organizational

collaboration in the life sciences. Am J Sociol 110(4):1132–1205

Robins G et al (2007) An introduction to exponential random graph (p*) models for social

networks. Soc Netw 29:173–191

Scherngell T, Barber M (2009) Spatial interaction modelling of cross-region R&D collaborations:

empirical evidence from the 5th EU Framework Programme. Pap Reg Sci 88(3):531–546

2 Network Formation and Geography 27



Scherngell T, Lata R (2011) Towards an integrated European Research Area? Findings from

Eigenvector spatially filtered spatial interaction models using European Framework

Programme data, Papers in regional science. doi:10.1111/j.1435-5957.2012.00419.x

Snijders T et al (2010) Introduction to stochastic actor-based models for network dynamics. Soc

Netw 3:44–60

Steglich C et al (2010) Dynamic networks and behaviour: separating selection from influence.

Sociol Methodol 40(1):329–393

Ter Wal ALJ (2013) The dynamics of the inventor network in German biotechnology: geograph-

ical proximity versus triadic closure. J Econ Geogr. doi:10.1093/jeg/lbs063

Vinciguerra S, Frenken K, Valente M (2010) The geography of internet infrastructure: an

evolutionary simulation approach based on preferential attachment. Papers in evolutionary

economic geography 10.06, Utrecht University Urban and Regional Research Centre

Wasserman S, Pattison P (1996) Logit models and logistic regression for social networks: I. An

introduction to Markov graphs and p*. Psychometrika 61(3):401–425

28 C. Autant-Bernard and Ç.S. Hazir
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Chapter 3

Recent Developments of Complex Network

Analysis in Spatial Planning

Andrea De Montis, Simone Caschili, and Alessandro Chessa

Abstract In the last years, we acknowledge a great scientific interest on complex

network analysis, a method able to characterise systems with very large numbers of

entities (the nodes or vertices) interlaced by a series of connections/relationships

(the links or edges). The objects of analyses as such are biological (predator-pray);

information (internet); social (actor-in the same movie); transportation (railway and

road networks) systems. While in general a network is an abstract (topo) logical

object, spatial networks belong to an important class of systems that includes nodes

and edges with a clear reference to space. Recently the interest of scientists has

focused on methods able to define and investigate on communities emerging from

the structure of a network. In this respect the spatial factor can emerge both as the

result of the topological community structure that maps back onto geography in the

form of sensible spatial regions, or just as spatial clusterisation of nodes in principle

embedded in space. In this essay, the authors aim at presenting a state of the art

summary of the last advances in the field of network community detection meth-

odologies with a detailed view to the case of spatial networks. Secondly, the paper

will report on a case study concerning a major issue for policy makers and planners:

the delimitation of sub-regional domains showing a sufficient level of homogeneity

with respect to some specific territorial features. We compare some intermediate

body partitions of the island of Sardinia (Italy) with the patterns of the communities
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of workers and students, by applying grouping methodologies based on the char-

acterisation of the Sardinian commuters’ system as a complex weighted network.

3.1 Introduction

Over the last 15 years there has been a great scientific interest in complex network

analysis, a method able to characterize systems with a very large number of entities

(the nodes or vertices) interlinked by a series of connections/relationships (the links

or edges). The objects of this analysis have regarded biological systems (predator-

pray); information systems (Internet); sociological systems; and transportation

systems (railway and road networks). While, in general, a network is an abstract

topological object, spatial networks belong to an important class of systems that

includes nodes and edges with a clear reference to space. Recently the interest of

scientists has focussed on methods able to define and investigate communities

emerging from the structure of a network. In this respect the spatial factor can

emerge both as the result of the topological community structure that maps back

onto geography in the form of sensible spatial regions, or just as spatial clustering of

nodes in principle embedded in space.

In this essay, the authors aim to present a state of the art summary of the last

advances in the field of network analysis and network community detection meth-

odologies focusing on spatial networks. We will review a case study concerning a

major issue for policy makers and planners: the delimitation of sub-regional

domains showing a sufficient level of homogeneity with respect to some specific

territorial features. We compare some intermediate administrative bodies of the

island of Sardinia (Italy) with the patterns of the communities of workers and

students, by applying grouping methodologies based on the characterization of

the Sardinian commuter system as a complex weighted network.

This essay unfolds as follows. In the next section, we develop a brief state of the

art summary on social networks with a focus on Research and Development (R&D)

networks. At the end of this section, we introduce the reader to the main concept of

the essay, i.e. spatial networks displaying a clear geographical reference. In the

third section, we review the recent advancements in the field of complex network

analysis as well as its adoption in geography, spatial and regional planning. In the

fourth section, we report on the latest advances regarding community detection

methodologies able to cluster nodes into homogeneous groups. The fifth section

presents a case study about the application of a network community detection

approach to study the problem of regionalisation. Commuter basins in the island

of Sardinia (Italy) are used to scrutinise the relevance of administrative subdivi-

sions at the provincial level.
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3.2 Complex, Social and R&D Networks

Complex network analysis (CNA) consists of a set of methods and tools, grounded

in graph theory, that enable scientists to model systems as networks. This approach

emphasizes the role of agents (i.e. the nodes or vertices) and the relations between

them (i.e. the edges or links). More and more, CNA has become the go to tool for a

number of scholars in many disciplines, ranging from macro infrastructures such as

road systems and gas pipeline frameworks, to the Internet, the world wide web and

micro ensembles, such as: genomic protein-amino acid and DNA chains (for a

review, see Albert and Barabàsi 2002; Newman 2003).

Social science has similarly applied graph theory to the study of many issues in

sociology, business administration, industrial management, anthropology and psy-

chology. In these works, nodes signify individuals and edges signify patterns of

acquaintances between them. One of the cornerstone findings in social science, the

‘six degrees of separation’ experiment (i.e. small world phenomena) was carried

out by the psychologist Stanley Milgram (1967) using graph theory. After

Milgram’s work, many authors further investigated collaborative social systems

(for a review of methods and applications, see Wasserman and Faust 1994). In these

studies scientists, engineers, or inventors are modelled as vertices and the links are

collaborative ties between them. Inter alia, Bloch (2005) scrutinised individual

behaviours of agents and collective dynamics of wide organizations.

In the remainder of this section, we discuss five research articles that have

demonstrated that individual behaviour in productive domains is clearly affected

by relational roles played by each agent both directly, on their local neighbour, or

indirectly, on the global network.

Hanaki et al. (2010) studied spillover effects arising from R&D collaborations in

the U.S. Information and Technology industry. Starting from the analysis of patents

granted from 1985 to 1995, they investigated the dynamics of the inter-firm

ensembles through a topological network representation. Firms are modelled as

nodes and edges represent collaboration ties (two firms were connected if they had

at least one inventor in common). Hanaki et al. (2010) demonstrated that the U.S. IT

R&D network belongs to the class of “small world” networks (Watts and Strogatz

1998). In the U.S. IT R&D network, the number of collaborations has increased

over the past few years generating a denser and more interconnected system. Nodes

display behaviours similar to the preferential attachment rule (Barabàsi and Albert

1999). In the case of R&D networks, the more connected nodes have patterns of

collaboration choices that are affected by closure and preferential attachment

(Barabàsi and Albert 1999).

Jin et al. (2011) referred to R&D networks of scientific collaborations. They

scrutinised research on bio-, and nano-technology from the R&D national data of

South Korea. Jin et al. detected and characterized nine communities of scientists

applying a divisive method introduced by Newman and Girvan (2004) for network

grouping and generalized for weighted networks. CNA showed that this R&D

network exhibits properties typical of scale free networks, similar to the network
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of citations between scientific papers (Derek de Solla Price 1965). The authors

presented an interesting description of the relationships between scientists working

in different fields and between their clusters. CNA approach allowed them to

indicate the most prominent members in each cluster and the most promising

sectors of R&D, which are worth interest and funding.

König et al. (2012) studied networks of firms focussing on costly R&D collab-

orations. In this study the authors described the inventive activities of firms

belonging to technology intensive industries. They demonstrated that stability and

efficiency is clearly dependent upon the cost of R&D collaborations and the

topology of the network. The authors also argued that “the complete graph is stable

in small industries and for low collaboration costs, while the class of size-

homogeneous disconnected cliques and the star are stable in large industries”

(König et al. 2012, p. 707).

Smith-Doerr et al. (2004) scrutinised the social network of project managers

belonging to the R&D laboratory of a Fortune 500 company and leading six

projects. They developed a CNA to study the centrality of each manager under

four points of view: instrumental, expressive, technical advice, and organizational

advice. In particular, the authors calculated the in-degree centrality (Freeman 1979)

of all the 42 members of the laboratory and discovered that project leaders’ average

centrality is by far higher than the corresponding figure of all lab members. A

relevant result of this work is that network centrality matters. The project leader,

who has a high centrality in almost all networks, is the only manager able “to look at

the big picture and generally reflect on how to think about R&D project success or

failure” (Smith-Doerr et al. 2004, p. 74).

We conclude this section focusing on spatial networks which are at the core

analysis of this manuscript. In the field of R&D networks, scholars have often

ignored the contribution of space and geography to this topic. Oerlemans and

Meeus (2005) investigated inter-organizational networks and the effects generated

by spatial proximity on firm performance. They argued that innovation agreements

with intra-regional firms matters but in a specific way. Firms that use intra- and

interregional agreements tend to outperform other firms in the same sector. But

firms that only depend on intra-regional or on interregional innovation ties do not

perform better than other firms in their sector. A combination of intra- and

interregional innovative ties are essential for the commercial success of a firm

(Sternberg and Arndt 2001; Oerlemans and Meeus 2005). The influence of space on

Research & Development collaboration has been studied by Chessa et al. (2013).

They took into consideration the evolution of geographical collaboration networks

under the European Research Area (ERA) framework. They scrutinized the net-

work generated by patent and scientific publication data by applying network

community detection methods (we will discuss this methodology in Sect. 3.4).

Results show that since 2003 the level of collaboration within and outside European

countries is stable which has resulted in poor research collaboration among Euro-

pean countries.
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Under this context, we are interested in inspecting the influence of space on

networks. In the next section we review the latest advances in the field of CNA with

a focus on geography and regional planning.

3.3 Complex Networks Modelling and Spatial Planning

Two hundred years ago only 5 % of the world’s population lived in cities, today

more than 50 % lives in urban areas. This trend is likely to increase as scientists

have forecasted that more than 80 % of the population will live in cities by the end

of the twenty-first century.1 Apart from the modification of our economic activities

(200 years ago people lived in rural areas and their main activities were generation

of food), living in compact settings has intertwined the daily activities of people

with “soft” and “hard” infrastructures. Cities are composed of interlinked systems

that can be conceptualised under the lenses of networks modelling. People move for

work or leisure using transport systems (trains, buses, roads, flights etc.), commu-

nicate and exchange information through land lines and digital networks (i.e. the

Internet); our lives are powered by electricity, sustained by utility systems and kept

safer through CTV camera networks. Financial systems, education systems, health

care systems, systems of government, as well as emergency services (i.e. “soft”

infrastructures) all contribute to maintain economic, health, cultural and social

activities in a territory. Because of their interactive nature, all these systems can

be seen as networks that are part of our daily life. Thus, we are surrounded and

immerged in networks that have intrinsic spatial features (Barthélemy 2011).

Within the field of spatial planning, several authors have studied spatial networks

with different aims such as scrutinising the network centrality of streets in a city and

the correlation with economic activities (Porta et al. 2010); the disease contagion

through human mobility networks (Bajardi et al. 2011); impacts, accessibility and

network patterns generated by movements of commuters among regional units

(De Montis et al. 2007, 2011; Caschili and De Montis 2013); urban transport

networks – i.e. bus, subway (von Ferber et al. 2009; Kurant and Thiran 2006;

Latora and Marchiori 2001); the structure and vulnerability of power grids

(Crucitti et al. 2004; Albert et al. 2004) and water distribution networks

(Yazdani and Jeffrey 2010).

The popularity of network modelling and analysis results from three factors:

(i) availability of large real-world data sets (also geographically referred),

(ii) accessibility of cheap high computational resources and (iii) opportunity, also

for non-computer scientists and mathematicians, to scrutinise large non-linear

systems. Within the field of spatial and regional planning, scientists and practi-

tioners have applied complex network analysis with two approaches: the first

derives from the statistical mechanics field and aims to explain observed

1 Source: http://web.unfpa.org/swp/2007/english/introduction.html
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hierarchical structure of settlements and to advance urban models using stochastic

approaches (Andersson et al. 2006; Porta et al. 2006a, b). A second branch of

studies adds to urban planning from a social network perspective. A few scholars

have also studied the interdependencies and influences among diverse actors in

planning processes (Booher and Innes 2002; Innes and Booher 2010).

From a modelling view point, classic planning approaches have long revolved

around the understanding of (i) patterns and rationale of economic activities

distributed in urban regions, (ii) forces that influence spatial configuration, and

(iii) urban structures and functions. Monocentric (Muth 1969; Mills 1972), poly-

centric (Heikkila et al. 1989; Wang, 2000) and dispersed models (Lang 2003) have

been used to describe the hierarchical organisation of urban settings. The relation-

ship between land use, economic activities and mobility are conceptualised through

rank-size rules (Zipf 1949), gravitational models (Putman 1983; Anderstig and

Mattsson 1991; Martinez 1996), spatial interaction models (Wilson 2000) and

discrete choice models (McFadden 1974).

In the remainder of this section we discuss the contribution of the two classes of

studies under the research framework of complex network analysis that have been

used in spatial and urban planning. Urban morphology has been at the core of these

studies. Seminal works that scrutinised urban morphology with a network approach,

date back to the 1960s with the work of Nystuen and Dacey (1961). They used

networks of commuters, goods and communications to quantify the degree of

association between cities. Kansky (1963) proposed a number of measures based

on graph theory to characterise transportation networks. A decade later, Space

Syntax methodology (Hillier et al. 1976; Hillier and Hanson 1984; Hillier 1996)

introduced a pioneering approach to measure the relation between different com-

ponents of urban structure using planar graphs. The novelty of this approach

consisted in measuring the cognitive complexity of a spatial graph through

non-local network measures. Space Syntax has multiple applications in a variety

of fields such as architecture, planning, transport and interior design (Hillier 1996).

Advancing the research framework of Space Syntax, Porta et al. (2006a, b, 2010)

introduced the concept and methodology of Multiple Centrality Assessment

(MCA). The aim of this new methodology was to include metric measures to

understand street networks and to use the spatial geographical representation of a

network instead of dual representations. In fact, Space Syntax scrutinises dual

graphs of real networks: axes are turned into nodes and intersections into links,

thus losing the geographic content of a network (Porta et al. 2010). It is interesting

to note that while urban growth has been investigated with a number of methods,

such as agent-based (Benenson 1998), spatial statistic modelling (Lopez et al. 2001;

Wu and Yeh 1997), neural networks (Pijanowskia et al. 2002) and fractal based

modelling (Batty and Longley 1994; Makse et al. 1998), the contribution of

network analysis to this topic is still scant. Focusing on microscopic mechanisms

of urban growth that generate macroscopic structures, Barthélemy and Flammini

(2008) proposed a network model which combines an optimisation process with

pattern formation. The main assumption of this model is that road networks evolve

converging into mass centres in an efficient and economic way. Andersson
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et al. (2006) used complex networks combined with a cellular automata and verified

that their model is consistent with large-scale regularities such as power laws and

fractality. With this approach they have been able to verify that hierarchical urban

structures can be explained as ‘a stationary property of a stochastic evolutionary

process rather than as equilibrium points in a dynamic process’ (Andersson

et al. 2006). Finally network analysis has also been used to address the so-called

‘problem of regionalisation’, i.e. to group local administrative units in upper level

clusters. In Sect. 3.5 we present a case study (De Montis et al. 2013) which has

applied network community detection as a tool to investigate the problem of

regionalisation.

The activities of urban planners are not only focused on modelling land uses,

population growth, mobility, and social and economic activities, but also around

regulations, stakeholder engagement and more in general public engagement. In

this direction, the contribution of social network analysts have involved collabora-

tive activities across public authorities (Scholz et al. 2008), public participation in

planning processes (Holman 2008; Davies 2002) and social community detection

(Wellman 2001). According to Dempwolf and Lyles (2011) three ‘broad planning

issues’ can be addressed with the tool of social network analysis. First, it is

important for a planner to understand the dimension and composition of a commu-

nity which, after all, is the beneficiary of planning activities. Thus planners should

take into consideration not only the various categories (young, adult, elderly,

employed, unemployed etc.) that compose a population but also the links between

them which generate the complex phenomena that we observe in a territory. A

second issue regards public participation. The use of network maps enhances

capital interaction among the ‘actors’ of a planning process and allows planners

to pay attention to their position in the network. Finally, a third issue regards the

creation of spatial and social dimension which generates innovation. Eraydin

et al. (2008) show that social networks among governmental and nongovernmental

actors instil a positive economic effect in a territory.

We conclude this section with some final remarks. Despite its importance as a

suitable tool for analysis in planning, complex network analysis seems scarcely

applied to territorial planning and processes. Much has still to be done for this

technique to be fully integrated in the tools used by planners.

3.4 Community Detection in Networks

In network analysis, starting from the network topological structure, it is possible to

extract various types of information. Beyond the well known centrality measures, a

way to characterize the internal network organization is to look at the cluster

formation among the node components, i.e. group of nodes that are well connected

among themselves with few outgoing links toward the other groups. Under the

Complex Networks Theory field, the task of finding these clusters goes under the

name of Community Detection (see Fortunato 2010, for a review). For example, in

3 Recent Developments of Complex Network Analysis in Spatial Planning 35



the World Wide Web communities correspond to websites pertaining to related

subjects (Flake et al. 2002); in social networks as clusters of individuals connected

by similar activities (Girvan and Newman 2002; Lusseau and Newman 2004),

while in metabolic networks communities behave as functional modules (Guimerà

and Amaral 2005; Palla et al. 2005), and compartments in food webs (Pimm 1979;

Krause et al. 2003).

Generally speaking, we can define three main categories: local, global, and

based on vertex similarities. In local definitions, the local connectivity of nodes is

inspected, disregarding the rest of the graph. In global definitions, the graph is

analyzed as a whole and the communities are regarded as structural units of the

graph. Definitions based on node similarity select communities’ membership

whenever nodes are similar each other, according to a quantitative/qualitative

criterion. In general, community detection aims to identify communities through

an analysis of the topology of a graph. New advances also propose to extend the

detection of communities in weighted networks, where not only the topology

shapes the cluster structure but also the weight of each link.

Indeed, community detection may become a complex activity, if we consider

systems with a large number of nodes and links. Communities tend to overlap each

other showing some nodes in common throughout the network (Palla et al. 2005;

Fortunato 2010). Another case is that of large networks for which nodes have

various levels of organization. Communities can have hidden internal cluster

organization, i.e. a community may include recursively other smaller communities.

In this case the community structure is characterized by a hierarchical structure

(Sales-Pardo et al. 2007).

In the literature, we can find three main classes of methods: divisive algorithms,

optimization methods, and spectral methods. Alternative approaches that do not fit

in the above classification are the following: clique percolation, random walk,

maximum likelihood, Q-state Potts model, Markov cluster algorithm, and L-shell

method (see Fortunato 2010).

In the study of the regionalization processes we envisage an interest of analysts

and planners for network based community detection methods. These tools are able

to detect patterns starting from the analysis of similarities among the basic elements

under investigation (the nodes) intertwined in a known topology. This goal can be

achieved, because network community detection methods cover additional infor-

mation, in comparison to traditional clustering methods adopted for identifying

sub-regions.

There are various community detection methods and algorithms; one of the most

important, adopted in many applications, is the modularity optimization introduced

by Newman and Girvan (Newman and Girvan 2004). This method has been widely

adopted, because it has a very straightforward implementation. However, it is

generally extremely difficult to find the best network partition. It has been found

that the optimization process is an NP-complete problem (Brandes et al. 2006). In

this case, it is probably impossible to find the solution in a time growing

polynomially with the size of the graph. In this respect the best approach is to use

a heuristic procedure able to approximate the solution. Moreover, the methods
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based on modularity optimization have a drawback related to the existence of a

resolution limit (Fortunato and Barthelemy 2006), which prevents it from detecting

smaller modules. The modularity function is defined as follows:

Qw ¼ 1

2W
�
X

ij

wij � sisj
2W

� �
� δ ci; cj
� �

where wij is the weight associated to the edge connecting the node i and the node j,
si ¼ ∑ wij (node strength) is the sum of the weights of the edges attached to the

node i, W ¼ 1
2

X
wij is the sum of all the edge weights, and δ(ci,cj) is a function

equal to one, when vertices i and j belong to the same community, and to zero

otherwise.

The modularity function quantifies the goodness of a network subdivision

among all possible ones, by computing, for a particular subdivision, how many

edges are inside the communities, with respect to the random case. The maximum

value attainable is 1 (an ideal case for which the clusters are perfectly isolated) and

can take also negative values. The 0 value corresponds to a single partition that will

coincide with the whole graph. A negative value means that the communities will

typically have few internal edges and many edges lying between them and so there

is no community structure whatsoever.

Once the optimization function has been defined, we need an efficient method to

maximize it. One of the most successful algorithms is the so called ‘Louvain

algorithm’ as proposed by Blondel et al. (2008).

The Louvain algorithm is quite interesting, since it allows one to successfully

approach two critical issues of optimization methods: detecting communities in

large networks in a short time and taking into account hierarchical community

structure. The number of communities at each hierarchical level emerges naturally

from the algorithm and has not to be imposed at the beginning, as in other clustering

approaches. Moreover, this bottom up approach can possibly help in preventing the

resolution limit problem found by Fortunato and Barthelemy (2006). This algorithm

may be used for both weighted and un-weighted networks.

The modularity is extremely useful in regional studies since, as we will see in the

following sections, it is able to reconstruct territorial clusters starting just from the

topological features of the network. Even if the nodes are not explicitly embedded

in space, when it comes to exploiting the aggregation features of the network, the

space emerges in the shape of sensible spatial domains. There are cases for which it

could be of interest to take explicitly into account the presence of space, and cancel

it in order to discover hidden interactions beyond the spatial correlations. To this

end, new modularity definitions have been recently introduced that include the

spatial factor (Expert et al. 2011; Cerina et al. 2012).

In the general case, valid for an un-weighted network, one usually chooses

Pij ¼ kikj/2m, which allows one to take as a null model a random network with

the same degree sequence as the original network. In order to introduce spatial

features, the idea is to change the null model defined by Pij and to compare the
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actual network with this null model. Recently, such a proposal was made by Expert

et al. (2011), who obtained the quantity Pij directly from the data describing the

network. More precisely, Expert et al. adopted the following form:

PData
ij ¼ NiNjf dij

� �

where Ni is related to the importance of the node i (such as the population, for

example) and f is the probability to have two nodes i and j connected at the distance
dij. This form recalls the gravitational model for traffic flows, where flows are

directly proportional to the product of populations and, inversely, to the distance. In

this specific case, extracting the node spatial dependencies from the real link

distribution present in the network data is the most effective way to subtract the

spatial component. Otherwise if there are any correlations between space and node

attributes, the data contains in an unknown proportion information on both space

and attribute and the method needs to be reformulated. One possible way to

overcome this problem is to explicitly determine a spatial dependency of the link

distribution and to put it as an independent factor in the optimization function

definition. In order to be able to deal with the correlated case and to remove spatial

effect only, one can introduce the following explicit function of space for Pij

PSpatial
ij ¼ 1

Z
kikjg dij

� �

where Z is the normalization constant, ki the degree of the node i, dij the Euclidean
distance between node i and node j. The function g(d) decreases with distance and

its role is to remove the spatial effect. A simple form of g(d) is chosen as follows

g dð Þ ¼ e�d=<l>

where <l> is the average Euclidean distance between nodes in the network. Of

course, <l> is a rough approximation of the typical community size, but it is

enough to capture the essence of the spatial signature of the network. In the next

section we present a case study for the application of network community detection

methodology in the field of regional planning.

3.5 Community Detection in Spatial Social Systems:

Regionalisation and Commuter Networks

Planning urban settlements is considered a complex process because it concerns

several intertwined issues (Hinloopen et al. 1983). The complexity of urban and

territorial phenomena makes this task even harder. Planners and scholars now have

access to new tools derived from complexity science. Among various techniques

and tools, Complex Networks paradigm, and network community detection
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methods provide valuable instruments to solve classical problems of regionaliza-

tion, i.e. the assessment of appropriate territorial units (Duque et al. 2007).

In this paragraph we review the case study of delimitation of provinces in the

Region of Sardinia as proposed by De Montis et al. (2013) using network commu-

nity detection techniques applied to commuter networks. Although we show that

community detection methods are useful tools to plan homogenous territorial units,

it is worth noting that planners need to check and combine models’ results with

political goals (Palermo 1980).

3.5.1 Devolution and Regionalisation in the Italian
Provinces

Modern states are constantly in search of optimal internal administrative configu-

rations in order to optimise resources and provide more efficient services to their

citizens. Devolution2 is the concept at the base of this process which has also been

achieved through in-between administrative sub units. In the European Union there

are four levels of in-between units: regional (NUTS 2 units) and local bodies

(NUTS 3, LAU 1 and LAU 2 units).3 Historically in Europe those in-between

districts have different names and carry out different tasks: in France “Le

departement” dates back to the Napoleonic age, counties are part of the Anglo-

Saxon tradition, “Regierungsbezirk” in Germany, “Provincia” in Italy,

“Disputaciones” in Spain. Those sub divisions are identified according to both

normative and analytical regulations. In fact sub administrative units have similar

spatial and demographic features; for instance in Italy a province is identified as an

administrative body with a population from 100 to 500,000 citizens which live at a

like distance around a big town. In this paper we focus on the Italian administrative

hierarchical organization. The case study that we discuss is based on the application

of a network community detection method for the recognition of productive, social

and administrative territorial units in Sardinia (De Montis et al. 2013). As of 2012,

Italy is divided into 20 regions (Regione in Italian) that are further divided into

110 provinces (Provincia) and 8,100 municipalities (Comune).

Nevertheless while regions and municipalities kept a strong configuration since

they have been founded, provinces with changing fortunes and cyclical successes

assumed different roles and strategies in the Italian territorial organization. During

the 60s, 70s and 80s, the institution of new in-between bodies similar to provinces

but smaller such as “comprensori”, “comunità montane” (mountain community),

“unità sanitarie” (health districts), “distretti scolastici” (school districts), raised the

discussion about which body could better represent and meet the demands of local

2Devolution is the process used by a central state to grant power to sub national administrative

levels such as regions, counties, provinces etc.
3 NUTS and LAU are two classifications introduced by EUROSTAT for dividing up EU territory.
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communities. “Provincia” is an administrative body with functions of (i) economic-

financial planning, (ii) territorial planning, and (iii) promotion and coordination of

projects among groups of municipalities. A recent adjustment of the legal institute

of Italian provinces was published in 2000 (“Testo Unico degli Enti locali”). With

this last act, the central government assigned the following duties to provinces:

• Equality;

• Autonomy;

• Relevance of constitutional governmental power;

• Subsidiarity;

• Sustainability;

• Self-sufficiency.

Thus Provincial bodies have been granted power for administrative functions

that regard spatial regulations. Those functions pertain to: land protection, land

enhancement, prevention of natural disasters, management of water resources,

energy development, enhancement of cultural heritage, transport infrastructures,

protection of fauna and flora, hunting and fishing, waste management and school

building. This shift in power from the central government gave to local communi-

ties, which are more knowledgeable about citizens’ needs, more independence. The

Italian central government has met a growing request for devolution which has also

resulted in creating new provinces. Since their institution the number of provinces

has always increased: in the last 20 years, seven new provinces have been

established. This administrative reorganisation has generated a new map of the

Italian national administrations. Nevertheless, the administrative devolution has

introduced new problems, such as redundant duties carried by different bodies at

different levels (regional, provincial and local administrations) and the waste of

public money. Under this background, in 2001 the Region of Sardinia decided to

double the number of Provinces to eight units. In this manuscript we discuss a

method to verify the goodness of the new regional administrative configuration of

Sardinia. The results that we present are based on a case study by De Montis

et al. (2013).

3.5.2 Regionalisation and Commuting Networks in Sardinia,
Italy

Sardinia is the second largest Mediterranean island with an area of approximately

24,000 km2 and 1,600,000 inhabitants. Its geographical location and morphological

features have fostered an important history of commercial and cultural relations

with international communities. As of 2012 the island is partitioned into eight

provinces and 377 municipalities. The Sardinian economy is progressively losing

competitiveness compared to other Italian regions and other European countries.

Sardinia is nevertheless in a slightly better position than average southern Italian
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regions (the poorest part of Italy). The Sardinian economy is primarily based on the

tertiary sector (67.8 % of employment), with commerce, services, information

technology, and especially tourism, which represents the main industry of the island

with 2,721 firms (Banca d’Italia 2012).

According to recent studies (De Montis et al. 2007, 2011), the inter-municipal

commuting system of Sardinia, (i.e. the daily movements of workers and students)

can be conceived as a network. The Sardinian inter-municipal commuting network

(SMCN) is composed of a set of vertices corresponding to towns, and a set of edges

representing the flow of commuters between towns. The SMCN is undirected and

weighted. The weight of each link represents the number of commuters that

generally move between two municipalities. The SMCN is built using information

from the national census (ISTAT). SMCN’s characteristics can be summarized as

follows:

• The SMCN is similar to a small-world random graph in terms of topology

(i.e. connectivity). However the level of local interconnection between nodes

diverges from usual random networks and is like typical technological networks.

These networks show a hierarchy of nodes. In the case of SMCN small munic-

ipalities are locally densely interconnected. Moreover the SMCNmay be defined

as a disassortatively mixed network (Newman 2000), where hub nodes prefer-

entially connect to nodes with a low connectivity and centrality ranking.

• The SMCN behaves as a scale-free network when it is conceived as a weighted

network. The analysis of probability distributions of weights and strengths (the

sum of weights’ links attached to each node) fit a power-law. The traffic is thus

gathered on a few links. This signals the presence of hub-behaviour over the

busiest travelled nodes.

In Fig. 3.1, we report a geographical representation of the SMCN in the years

1981, 1991 and 2001. The networks were pruned of the less important links

(connections with a few commuters compared to the average values). It is worth

mentioning that the system has strongly improved its topological structure becom-

ing more complex as time passes. This can be explained by looking at some

improvements in the Sardinian economy, for example an increase in the number

of cars owned, upgrades in infrastructure (especially for the road system, less for the

rail system) and the per capita income.

The research idea that we discuss in this essay is based on the concept that

network communities can be seen as productive basins of mobile agents. Commuter

movements generate diversified scenarios depending on socio-economic peculiar-

ities of the territory involved. Censis (2008) showed a positive correlation between

the level of commuting in a territory and GDP. Richer regions have higher per-

centage of commuters. On the contrary, a negative correlation is detected between

number of commuters and unemployment rate. The structure of commuter basins

provides a functional redefinition of the administrative and cultural divisions based

on the idea that the strongest interrelationships link administrative units that belong

to the same cluster (i.e. municipalities are clustered into provinces). In order to

understand the composition and significance of network commuting communities,
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we confront them with administrative and cultural divisions, such as provinces,

“Piano di Rinascita” units, “Comprensori”, “Profili d’Area” and Historical regions.

Fifteen territorial units were proposed with “Piano di Rinascita” during the 1960s.

In the 70s, 25 Comprensori were conceived and designed (although they were never

made official): Comprensori represented a new intermediate administrative level

between Regione and Comuni (municipalities). The historical regions are homo-

geneous geographical areas that group together Sardinian municipalities with a

similar history, language, and cultural identity.

De Montis et al. (2013) applied the network community detection method

proposed by Blondel et al. (2008) to the SMCN and correlate the results with the

above mentioned administrative units. Figure 3.2 visually overlays the limits of

provinces before the 2001 reform (old provinces) and after (new provinces) with the

eight communities detected by the Blondel method for the SMCN in 2001.4

The Adjusted Rand Index (Hubert and Arabie 1985) was used in order to

quantitatively assess similarities between the Lauvain and the administrative par-

titions. Results show that the highest similarities of Lauvain partition are with the

new configuration of provinces and Profili d’Area. The highest similarities are

detected in the SMCN’s partitions of years 1991 and 2001. In brief, we can assert

that the recent institution of the four new provinces better suits the actual socio-

economic dynamics of the Sardinian territory. With this case study, we have shown

that community detection methods are helpful tools in spatial and urban planning.

They provide guidance for analysts, planners and stakeholders to read, understand

and depict territorial dynamics. Such models and methods applied to planning

Fig. 3.1 Geo-referred representation of the SMCN in 1981 (left), 1991 (centre) and 2001 (right)
(Source: De Montis et al. (2013))

4 See De Montis et al. (2013) for further visualisations and results on Comprensori, Piano di

Rinascita, Profili d’Area, historical regions and communities detected over the SMCN.
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cannot replace the work of analysts but can facilitate to unearth and implement

solutions for complex spatial problems in regional planning.

3.6 Conclusion

In this chapter, we have presented and illustrated evidence of a case study regarding

the detection of commuters’ communities in Sardinia starting from the character-

ization of a social network sui generis, where nodes stand for origin and destination

towns and edges correspond to commuting flows between them. We have verified

that SMCN exhibits properties typical of other social networks. The presentation of

the case study is provided with a review of (i) applications of CNA to social and

R&D networks that show a clear reference to space, (ii) recent integration between

spatial and network analysis fields and (iii) the last acquisitions in the field of

community detection methodologies adopted to partition, in particular, spatial

networks.

The development of the case study application demonstrates that the applied

community detection methodology is able to profile homogeneous and contiguous

clusters of municipalities that are commuters’ basins which generally mirror pro-

vincial bodies. In a backward looking vein, this method has allowed us to spot

critical situations arising from spatial discrepancies between commuter’s basins

Fig. 3.2 Overlay of SMCN communities with old and new provinces (Source: De Montis

et al. (2013))
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and other relevant partitions historically adopted by planners. In a forward looking

perspective, community detection proves to be a tool able to support planners in

shaping ideal spatial units or subdivision, a very important issue for regionalization

and regional planning.

In supporting the foregoing remarks for the unforeseeable future, Complexity

and Complex Network theory have to be more integrated into urban and regional

planning methods. This can be achieved through an extensive application of these

concepts to model urban phenomena. This practice might change the perceptions of

urban phenomena and the manner that urban planning is practiced. The case study

presented in this manuscript is one of the first attempts for a fruitful integration

between the complex network paradigm and regional science. This case study

encourages us to extend the analysis by including an economic framework into

the analysis. We would like to verify whether the detected clusters are also

economically sustainable. Furthermore, the method needs to be validated in other

realms, both in other Italian regions and in international settings.
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Chapter 4

Determinants of Cross-Regional R&D

Collaboration Networks: An Application

of Exponential Random Graph Models

Tom Broekel and Matté Hartog

Abstract This study investigates the usefulness of exponential random graph

models (ERGM) to analyze the determinants of cross-regional R&D collaboration

networks. Using spatial interaction models, most research on R&D collaboration

between regions is constrained to focus on determinants at the node level (e.g. R&D

activity of a region) and dyad level (e.g. geographical distance between regions).

ERGMs represent a new set of network analysis techniques that has been developed

in recent years in mathematical sociology. In contrast to spatial interaction models,

ERGMs additionally allow considering determinants at the structural network level

while still only requiring cross-sectional network data.

The usefulness of ERGMs is illustrated by an empirical study on the structure of

the cross-regional R&D collaboration network of the German chemical industry.

The empirical results confirm the importance of determinants at all three levels. It is

shown that in addition to determinants at the node and dyad level, the structural

network level determinant “triadic closure” helps in explaining the structure of the

network. That is, regions that are indirectly linked to each other are more likely to

be directly linked as well.
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4.1 Introduction

There is growing scientific interest in the creation of knowledge and its diffusion

among organizations. In the new growth theory, new knowledge is regarded as

being pivotal to economic growth by generating increasing returns (Romer 1990).

In evolutionary economics, the re-combination of existing knowledge from differ-

ent sources is argued to be crucial for new innovations to occur (Nelson and Winter

1982). These theories and the according empirical evidence also impacted the

policy level. For instances, one of the most well known policy instruments to

stimulate knowledge diffusion and innovation are the Framework Programmes of

the European Union. These programs have been in existence since 1984 and are

used to fund thousands of collaborative research projects between organizations in

the EU.

Such R&D collaboration networks, which are induced by policy, alter the spatial

diffusion of knowledge. This put the investigation of their spatial structures on the

agenda of regional economists and economic geographers (Autant-Bernard

et al. 2007). The geographical structures of inter-organizational collaboration

networks are frequently analyzed from an organizational perspective (cf. Giuliani

and Bell 2005) and a regional perspective, the latter focusing on cross-regional

R&D collaboration networks (cf. Scherngell and Barber 2009, 2011; Hoekman

et al. 2010). In order to investigate factors explaining the structure of cross-regional

networks, most commonly used are spatial interaction models, which allow for

considering factors at the node and dyad level. An example of a factor at the node

level is the size of a region that matters as regions with more organizations are also

more likely to have links to regions elsewhere. At the dyad level, most attention has

been paid to the effect of geographical distance, which has been found to have a

negative impact on the chance of research collaboration (cf. Ponds et al. 2007;

Scherngell and Barber 2009; Hoekman et al. 2009, 2010).

In addition to the node and dyad level, factors at the structural network level may

also be important, though. That is, the creation of new links might not only depend

on attributes of regions or region pairs, but may also be influenced by the existing

structure of the cross-regional network. For instance, a key hypothesis in organi-

zational network science is the tendency towards triadic closure (or transitivity),

which implies in this context that regions, which are indirectly linked, are more

likely to link themselves as well. However, factors at the structural network level

cannot be included in spatial interaction models.

This chapter presents exponential random graph models (ERGM) as an alterna-

tive empirical tool to investigate this. These models have been developed in

mathematical sociology in recent years (Snijders et al. 2006; Robins et al. 2006,

2007; Wang et al. 2012) and are increasingly used across scientific disciplines, for

example in bioscience (Saul and Filkov 2007), political science (Desmarais and

Cranmer 2012) and organization science (Uddin et al. 2012). The advantage of

these models is that they allow for simultaneously estimating the effect of factors at

the node, dyad, and structural network level for networks that are observed at one
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point in time. We illustrate the usefulness of ERGMs by exemplarily investigating

the structure and its determinants of the cross-regional R&D collaboration network

in the German chemical industry between 2005 and 2010.

The study is structured as follows. The second section gives an overview of the

literature on spatial structures of R&D collaboration networks and their determi-

nants. This includes a brief discussion of factors at the node, dyad, and structural

network level that may impact network structures. The third section elaborates on

the exponential random graph model that we subsequently use to investigate the

structure of the cross-regional network. We present the empirical data in the fourth

section. It is followed by the discussion of the results in the fifth section and some

concluding remarks in the sixth section.

4.2 Determinants of Cross-Regional R&D Collaboration

The structural determinants of cross-regional R&D collaboration networks can be

distinguished at three different levels. These are the node level, the dyad level, and

the structural network level. In the following, we elaborate on the factors effective

at these three different levels.

Node level factors are properties of network entities themselves. With respect to

regional R&D collaboration networks, regions’ size and research intensity are

particularly important. Regions with more organizations can be expected to have

more ties because they have more collaboration opportunities. Such a size effect

also applies at the firm level, as large organizations are likely to have more ties than

small organizations because their position in the industry is more prominent and

have more resources at their disposal to create and maintain ties. For instance,

Boschma and Ter Wal (2007) find that larger organizations are more central in the

knowledge network of footwear producers in Barletta. Secondly, the research

intensity of organizations in a region matters. At the firm level, Giuliani and Bell

(2005) show that organizations with a more advanced knowledge base are more

frequently approached by other organizations to exchange knowledge because they

are perceived to be ‘technological leaders’. A similar argument can be applied to

the regional level: the research intensity of a region is generally characterized by a

large number of R&D employees, many organizations being engaged in R&D-

intensive activities, and by the presence of universities or other research institutes.

These characteristics are likely to increase the number of research collaboration

links organizations have with other organizations in the same region (regional

collaboration) as well as with organizations located elsewhere (cross-regional

collaboration), with the latter representing a region’s (degree) centrality in the

cross-regional collaboration network. Accordingly, it can be expected that the

absolute numbers of regional and cross-regional links are strongly correlated.

Factors at the dyad level are characteristics of relationships between two entities

(nodes) in a network. In the context of the paper it refers to the relation between two

regions. A key idea in sociology is that entities are more likely to link when they

4 Determinants of Cross-Regional R&D Collaboration Networks 51



have similar attributes, known as homophily effect (McPherson et al. 2001). For

instance, regions with organizations that operate with similar routines and under

comparable incentive mechanisms are more likely to be linked in R&D collabora-

tion. Another example are universities, which are subject to different incentive

frameworks than firms when it comes to knowledge creation and diffusion as they

aim to publish new knowledge, whereas firms have an incentive to keep new

knowledge secret. Hence, because of their institutional proximity (Metcalfe

1995), universities are more likely to collaborate with others and especially with

other universities (cf. Broekel and Boschma 2012; Broekel and Hartog 2013). This

is likely to translate to the regional level as regions rarely house more than one

university. Accordingly, university regions have a higher likelihood of being linked

to each other.

In addition to institutional proximity, other forms of proximity may also be

relevant, namely: geographical proximity, technological proximity, and social

proximity. Many studies confirm that cross-regional R&D collaboration is more

likely when regions are located close to one another in space (e.g. Maggioni

et al. 2007; Scherngell and Barber 2009; Hoekman et al. 2009, 2010). This may

be due to a variety of reasons, for instance geographical proximity facilitates face-

to-face contact, which stimulates the diffusion of information about potential

collaboration partners. The likelihood of cross-regional R&D collaboration is

shown to increase when regions have similar technological profiles and specializa-

tions (Fischer et al. 2006; LeSage et al. 2007; Scherngell and Barber 2009). A

potential explanation is that organizations are more prone to collaborate with

organizations with related knowledge assets. Similar technological profiles (tech-

nological proximity) ensure that two organizations can easily communicate and

learn from each other (Cohen and Levinthal 1990; Nooteboom 2000). Social

proximity may also increase the likelihood of R&D collaboration (cf. Autant-

Bernard et al. 2007). People already knowing each other find it easier to develop

trust-based relations, which in turn facilitate knowledge exchange and ease inter-

actions across regional boundaries (Maskell and Malmberg 1999; Sobrero and

Roberts 2001; Breschi and Lissoni 2009).

In addition to these factors at the node and dyad level, factors at the structural

network level may also matter for the structure of cross-regional R&D collabora-

tion. Such factors relate to properties of the entire network. Three factors are

commonly put forward in this context: triadic closure (transitivity), multi-

connectivity, and preferential attachment (cf. Ter Wal and Boschma 2009; Glückler

2010). Triadic closure predicts that partners of organizations are likely to become

partners themselves as well. As a result, a network will consist of many triangles,

i.e. dense cliques of strongly interconnected organizations (Ter Wal 2011). Such

cliques can be regarded as a sign of social capital (Coleman 1988) that may enhance

trust and willingness among actors to invest in mutual goals, such as research

collaboration. In contrast, multi-connectivity suggests that organizations will con-

nect to others in multiple ways to decrease the dependency on a single link. It

implies that multiple paths are formed amongst organizations leading to multiple

reachability. Evidence for this is found in the creation of inter-firm alliances
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between US biotech firms (Powell et al. 2005). Preferential attachment means that

organizations with many links are more likely to create or attract new links in the

future. If a network is shaped by this factor, its degree distribution follows a power

law (Barabasi and Albert 1999). Gulati (1999) shows that in the case of multina-

tional firms, the likelihood of creating new alliances increases the better organiza-

tions are connected in the network. Hence, the network of alliances among

multinational firms is subject to preferential attachment processes.

In contrast to most of the discussed factors at the node and dyad level, these

factors are not regional in nature. Concepts like transitivity, preferential attachment

or reciprocity do not apply to the regional level. However, in most empirically

observed cross-regional networks, links are constructed from regionally aggregated

inter-organizational relations. To the extent that these inter-organizational relations

involve organizations being located in different regions such effects will naturally

be translated to the cross-regional network. Accordingly, they need to be taken into

account when analyzing the network structure as multi-connectivity, preferential

attachment, and triadic closure also shape the empirically observed cross-regional

networks.

To estimate the relative impact of the above factors on the structure of a network,

they need to be simultaneously incorporated in the empirical model. This is not

possible with the models most frequently used to investigate cross-regional collab-

oration: spatial interaction models in general and gravity models in particular

(cf. Scherngell and Barber 2009). These models can account for factors at the

node and dyad level. However, they cannot be used to evaluate factors at the

structural network level. In light of the theoretical relevance of factors at the

structural network level, we therefore argue that network analysis modeling tech-

niques represent a powerful alternative because they are able to simultaneously

incorporate factors at all three levels.

When longitudinal data is available, a stochastic actor-based network approach

can be used. It models the change of a network from one point in time to another as

part of an iterative Markov chain process (see for technical details: Snijders

et al. 2010). When it comes to the analysis of research collaboration networks of

regions, however, such an approach is less useful. By aggregating collaboration

data to the regional level and creating cross-regional networks, researchers gener-

ally are interested in approximating the relational interaction structures of regions

and investigate their structures and determinants. Such networks are unlikely to

drastically change within short time periods, though, as they are results of long-term

social, regional, and industrial evolution processes. Hence, even when longitudinal

data on these cross-regional networks structures are available, it is unlikely to cover

a sufficiently long time period. It may include multiple time periods (years) and

thereby principally allow for employing longitudinal network analysis to study

changes in the underlying cross-regional interaction structures.1 However, the

1 The relational data derived from the 5th, 6th, and 7th EU-Framework Programmes are (currently)

a good example in this respect. While they represent longitudinal data, it covers only a limited
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results generated with stochastic actor-based network approaches are unlikely to

yield meaningful insights because the empirically observed changes in the network

structures are dominated by short-term fluctuations that are of little interest to the

researcher. We therefore argue that exponential random graph models are the

preferred option when investigating the structure of cross-regional interaction on

the basis of data with a cross-sectional nature and factors at the structural network

are to be considered. We elaborate on these models in the next section.

4.3 Exponential Random Graph Models

Exponential random graph models are stochastic models that approach link creation

as a time-continuous process. They regard a network observed at one point in time

as one particular realization out of a set of multiple hypothetical networks with

similar properties. This allows applying these models to purely cross-sectional

network data.

The aim of exponential random graph models is to identify factors that maximize

the probability of the emergence of a network with similar properties as the

structure of the observed network. The general form of exponential random graph

models is defined as follows (Robins et al. 2007):

Pr Y ¼ yð Þ ¼ 1

κ

� �
exp

X
A
ηA gA

n
yð Þ

�
ð4:1Þ

where Pr(Y ¼ y) is the probability that the network (Y) generated by an exponential
random graph is identical to the observed network (y), κ is a normalizing constant

to ensure that the equation is a proper probability distribution (summing up to 1), ηA
is the parameter corresponding to network configuration A, and gA (y) represents
the network statistic. Network configurations can be factors at the node level, dyad

level and structural network level.

Estimation of the parameters is done with maximum pseudo likelihood or a

Markov Chain Monte Carlo Maximum Likelihood Estimation procedure. The latter

has been developed most recently and is regarded as the preferred procedure as it is

often most accurate (Snijders 2002; Van Duin et al. 2009). It is based on the

generation of a distribution of random graphs by stochastic simulation from a

starting set of parameter values, and subsequent refinement of those parameter

values by comparing the obtained random graphs against the observed graph. This

process is repeated until the parameter estimates stabilize. If they do not, the model

might fail to converge and hence becomes unstable (see for technical details,

Handcock 2003; Hunter et al. 2008).

time-period (1998–2013). Of course, this may change when data on future programs will become

available.
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Checking whether the parameters predict the observed network well,

i.e. evaluating a model’s goodness of fit, is done by comparing the structure of

the simulated networks to the structure of the observed network. According to

Hunter et al. (2008), the comparison consists of the degree distribution, the distri-

bution of edgewise shared partners (the number of links in which two organizations

have exactly k partners in common, for each value of k), and the geodesic distri-

bution (the number of pairs for which the shortest path between them is of length k,

for each value of k). The more the distributions of the simulated networks are in line

with those of the observed network, the more accurate are the parameters of the

exponential random graph model. In the next section, we construct an exponential

random graph model to investigate the structure of the network of subsidized R&D

collaboration in the German chemical industry.

4.4 Determinants of Cross-Regional R&D Collaboration

in the German Chemical Industry

4.4.1 Data

We analyze R&D collaboration that has been funded by the German federal

government. As in most other advanced countries, the government actively sup-

ports public and private R&D activities with subsidies. While the Federal Ministry

of Education and Research (BMBF) is the prime source of subsidies, the Federal

Ministry of Economics and Technology (BMWi) and the Federal Ministry for the

Environment, Nature Conservation and Nuclear Safety (BMU) contribute as well.

The federal ministries publish comprehensive information about subsidized pro-

jects in the so-called “Förderkatalog” (subsidies catalog). This catalog contains

detailed information on more than 150,000 individual subsidies that have been

granted between 1960 and 2012. The catalog also includes information on the

cooperative nature of projects. It specifically indicates if projects are joint projects

realized by consortia of organizations. Participants in joint projects agree to a

number of regulations that guarantee significant knowledge exchange between the

partners. Accordingly, two organizations are defined to cooperate if they participate

in the same joint project. Hence, the original network is a two-mode network

(project-organizations links), which we transform into a one-mode projection of

the network (organization-organization links). All organizations can be assigned to

labor market regions allowing for regionalizing the network (see for more details on

the data Broekel and Graf 2012). The data is comparable to the EU Framework

Programmes (EU-FP) data by and large, which is extensively used to model

research collaboration networks (cf. Scherngell and Barber 2009). In contrast to

the EU-FP data, the data at hand exclusively covers collaboration between German

organizations.

4 Determinants of Cross-Regional R&D Collaboration Networks 55



To construct the network of subsidized R&D collaboration in the German

chemical industry, we first identify all firms in the data that are classified as being

involved in the 2-digit NACE code C20 ‘Manufacture of chemicals and chemical

products’. Subsequently, all cooperative projects are extracted in which at least one

of these firms participates. On the basis of the joint appearance in a project, we

construct the inter-organizational network among all chemical firms participating in

these projects. We only consider links among firms: links to universities, research

organizations, associations, and to firms belonging to other industries are excluded.

We believe that this approach provides the most conservative picture of the

(subsidized) R&D collaboration network in the chemical industry. Alternatively

one may consider all organizations active in joint projects in which at least one firm

of the chemical industry is participating. However, such seems to be a very broad

definition of an industry-specific network, which makes the definition of appropri-

ate empirical variables more difficult. We acknowledge that the links to organiza-

tions in other industries are also likely to shape the intra-industry network, but as

our main focus is on the impact of the factors at the three different levels (node,

dyad, structural) rather than on knowledge exchange as such, we leave this for

future research.

The corresponding inter-organizational undirected network is subsequently

aggregated to the regional level using information on organizations’ location in

the 270 German labor market regions. The 270 labor market regions are defined by

the German Institute for Labor and Employment (e.g. Greif and Schmiedl 2002).

We construct the network that existed between 1 January 2005 and 31 December

2010. In this period, 775 projects were subsidized in which at least one firm of the

chemical industry was involved. These projects are split into 975 individual funds

allocated to 557 German firms belonging to the chemical industry.2 133 of the

775 projects are joint projects, which involve on average 2.8 firms. The resulting

cross-regional R&D collaboration network is shown in Fig. 4.1.

The network is dichotomized, as we are only interested in whether or not a link

exists between regions. The figure shows that the large agglomerations of the Ruhr

Area, Frankfurt am Main, and Munich are important nodes in the network. In

addition, a number of central regions are located along the Rhine River in the

west. The region of Dresden is a central node in East Germany. All these regions are

well-known centers of the chemical industry in Germany. Some additional descrip-

tive statistics of the network are presented in Table 4.2 in the Appendix.

2 This figure is based on the number of executing organizations (“Ausführende Stelle”) as given in
the data. Many of these organizations are part of larger organizations. This has however little

relevance for the results as all data are aggregated to the regional level.
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4.4.2 Construction of Empirical Variables

Node Level Variables

The most important node-level factors likely are the intensity of regional R&D and

innovation activities in the field of chemistry. Foremost, this is because undertaking

R&D activities is necessary to receive R&D subsidies. Regions with large R&D

activities are likely to host more organizations that are involved in R&D collabo-

ration. Moreover, such regions may also be the location of the most successful

innovators, which are preferred collaboration partners. We therefore consider the

number of applied patents in chemistry by regional organizations as proxy for the

intensity of regional R&D activities in this field. The regionalized data on patent

applications are published in Greif and Schmiedl (2002) and Greif et al. (2006),

which include applications to the German as well as to the European Patent Office,

with a correction for double counts. The patents are assigned to labor market

regions according to the inventor principle. The patent data is organized according

to IPC-classes, which is matched to the 2-digit NACE industry using the concor-

dance of Broekel (2007). Lacking the data for the years 2005–2010, we construct

Fig. 4.1 Network of

subsidized R&D

collaboration among firms

in the German chemical

industry (2005–2010)
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the first node-level variable as the summed number of patents of regional firms in

the field of chemistry in the years 2001–2005.3 The variable is denoted as PATS.

We take into account the effect of urbanization by including population density

(POP) and the gross-domestic product (GDP) of a region in the year 2005. The

corresponding data are obtained from the German Federal Institute for Research on

Building.

Firms located in regions with strong public research infrastructure may also be

more likely to link across regions. For instance, being co-located with public

research institutes may induce knowledge spillovers and give better access to

highly qualified personnel (e.g. Fritsch and Slavtchev 2007). Accordingly, firms

in these regions may be more prone to conduct R&D, engage in R&D collaboration,

and be more successful in terms of innovation. In order to approximate this, we

measure regions’ public R&D infrastructure with three variables. The presence of

universities in a region is modeled by counting their numbers of graduates in natural

sciences in 2005 (UNI). Similarly, the analysis includes the number of employees

working in regional research institutes of the Max Planck Society (MPG) and the

Fraunhofer Society (FHG). More precise, only the numbers of employees working

in the institutes’ technological or natural science institutes in the year 2005 enter the

analysis.4

Dyad Level Variables

We construct three variables at the dyad level. We measure geographical proximity

with the physical distance between two regions’ geographic centers. The variable is

denoted as (GEO_DIST). The chance of two regions being linked is expected to

decrease with geographical distance. Geographical proximity frequently correlates

with social proximity (Boschma 2005), which needs to be considered in the

interpretation.

We also include the variable SAME_REG that has a value of 1 if both regions

are located in the same federal state (i.e. NUTS 1 region), and 0 if not. SAME_REG

not only accounts for geographical proximity. It is likely to represent institutional

proximity as well, as regions in the same federal state are probably similar in their

R&D-related institutional framework. The reason for this is the significant role the

federal level is playing in the German R&D landscape. For instance, each federal

state (“Bundesland”) is responsible for its own resource endowment of universities

and has its own R&D policies.

We also take into account that two regions with universities may be more likely

to be linked. Firms in such regions are probably structurally more similar than two

3 The latest version of the “Patentatlas” was published in 2006 and includes the patent data up to

2005. We use the aggregated numbers for 2001–2005 to minimize annual fluctuation.
4 The employment numbers are relatively stable over time. Using data for a single year is therefore

considered appropriate.
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firms of which one is not located in a university region. It can be expected that firms

in university regions are more R&D intensive and technologically more advanced

as are more probable to benefit from knowledge spillovers (cf. Jaffe 1989). To take

this into account, we include the variable UNI_1, which has a value of one if both

regions have a university and zero otherwise.

Notably, we do not construct a measure of technological similarity, which has

been shown to make regions more likely to be linked (Scherngell and Barber 2009).

This is primarily motivated by data constraints. We analyze a network among firms

of the same industry aggregated at the regional level. Hence, for the construction of

a meaningful technological similarity measure we need information about the

technological profiles of all regional firms in the chemical industry. Unfortunately,

we miss such information and have to leave this issue to future research.

Structural Network Level Variables

We include four variables at the structural network level. Triadic closure

(or transitivity) is captured by the geometrically weighted edgewise-shared partner

statistic (GWESP-statistic: Snijders et al. 2006; Hunter et al. 2008). It measures the

number of triangles in the network whilst taking into account the number of links

that are involved in multiple triangles (multimodality) (see for details: Hunter

et al. 2008). It thereby captures how frequently two nodes are connected by a direct

link as well as by an indirect connection of length 2 (i.e. “two-path”) through

another node (e.g. Hunter 2007). If a positive coefficient is found for this statistic,

there is a tendency towards triadic closure in the network.

We consider the geometrically weighted dyad shared partner statistic (GWDSP),

which is an advanced version of the alternating k-two-path statistic put forward by

Snijders et al. (2006). It measures the extent to which a network shows a tendency

of nodes not directly linked to each other being at least indirectly linked. In other

words, the statistic approximates whether multiple paths exist between such nodes.

Accordingly, it captures multi-connectivity for nodes that are not tied directly.

Another variable at the network level is EDGES. It equals the number of links in

the network and should always be included in exponential random graph models.

Moreover, EDGES represents a so-called k-star(1) parameter. K-stars are essential

configurations in networks. For instance, a k-star(2), or 2-star, corresponds to three

nodes of which one is linked to each of the other two. Accordingly, a k-star(3)

shows as four nodes with one node being linked to the other three. A triangle,

i.e. three mutually connected nodes, logically includes three k-stars(2). This means

that these configurations are hierarchically related (cf. Snijders et al. 2006; Hunter

2007). While the EDGES parameter corresponds to a type of intercept parameter in

the model, it is especially useful when considering the GWDEGREE statistic

as well.

GWDEGREE is the geometrically weighted degree statistic, which helps model-

ing the observed network’s degree distribution. Notably, the statistic can also be

seen as an equivalent to the more traditional k-star statistic (Hunter 2007). When
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being considered alongside the EDGES statistic, GWDEGREE (broadly) allows

modeling preferential-attachment processes. More precise, if this statistic obtains a

positive coefficient it signals the presence of preferential-attachment and a negative

coefficient indicates anti-preferential attachment (Hunter 2007).

For all three statistics, GWESP, GWDSP, and GWD, decay parameters have to

be specified. Because few attempts have been made to systematically identify the

best fitting parameter combinations (cf. Wright 2010), researchers commonly rely

on a manual iterative trail-and-error process of estimating varying model specifi-

cations. These specifications differ in terms of included variables as well as decay

parameters of the GWDSP, GWESP and GWDEGREE statistics. This process ends

when the best fitting model is identified. The best fitting model is a model that is

stable and converges (when the Markov Chain Monte Carlo approach is used, the

parameter traces should be horizontal) and provides the most appropriate goodness-

of-fit statistics (matching degree, edgewise shared partners, and geodesic distribu-

tions) given the empirical data (observed network). In other words, the best fitting

model most accurately predicts the structure of the observed network.

Once this model is identified the final goodness-of-fit statistics and MCMC trace

plots are generated exclude all variables that are not significant at the 0.05 level in

the original model. These variables are excluded because they represent noise that

may distort the model and thereby bias the according statistics (cf. Wright 2010).

This “refined” model is used to generate all goodness-of-fit related statistics. We

present the best fitting ERG-model for the cross-regional R&D collaboration

network in the next section.

4.5 Results

Table 4.1 presents the results of the final, i.e. best fitting, model and those of its

refined variant. Included are factors at the node, dyad, and structural network level.

The model is stable and converges. Moreover, it is characterized by appropriate

goodness-of-fit statistics (matching degree, edgewise shared partners, and geodesic

distributions (Fig. 4.2 in the Appendix) and horizontal parameter traces (Figs. 4.3,

4.4, 4.5, and 4.6 in the Appendix).

Before we discuss the variables with significant coefficients, it is worthwhile to

take a brief look at the insignificant ones. The insignificance of GDP implies that

the economic prosperity of regions does not impact the structure of the cross-

regional R&D collaboration network in the German chemical industry. The mea-

sure of the absolute physical distance (GEO_DIST) between regions better captures

the effect of geographic distance than when considering whether two regions are

part of the same federal state (SAME_REG), as the latter’s coefficient is insignif-

icant while that of the first is not. The finding moreover questions the role of

institutional proximity, which we argued to be reflected by SAME_REG.

The measure of the network’s degree distribution (GWDEGREE) does not help

in explaining the structure of the network. This means that we do not find evidence

for preferential attachment processes, i.e. well-connected regions are not more
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prone to gain additional links than sparsely connected regions. The same applies to

the GWDSP-statistic suggesting that two regions without a direct link are unlikely

to be indirectly connected. Accordingly, we observe insignificant coefficients for

variables at all three levels (node, dyad, and structural network level).

Now, we turn towards the significant variables reported in Table 4.1. As

expected, regions with R&D intensive firms (PATS) tend to have more links. The

same applies to urban regions (POP_DEN) and regions in which institutes of the

Max-Planck (MPG) and Fraunhofer (FHG) societies are located. The according

coefficients of PATS, POP_DEN, MPG, and FHG are all positive and significant.

UNI obtains a negative significant coefficient suggesting that university regions

tend to have fewer links. While this contradicts our expectations, it is essential to

also consider the positive significant coefficient of the dyad-level variable UNI_1 in

the explanation. Accordingly, university regions generally have less links but they

Table 4.1 Results of exponential random graph model with dyad level, node level and structural

network level variables

Variable

Main model Refined model

Estimate

Std.

error p-Value Sign. Estimate

Std.

error Sign.

Node level

PATS 0.00056 0.00013 < 1e-04 *** 0.00028 0.00008 ***

UNI �0.00069 0.00017 < 1e-04 *** �0.00119 0.00015 ***

POP_DEN 0.00009 0.00004 0.022735 * 0.00022 0.00001 ***

GDP �0.00113 0.00159 0.478296

MPG 0.00037 0.00011 0.000882 *** 0.00071 0.00009 ***

FHG 0.00064 0.00026 0.013101 * 0.00135 0.00016 ***

Dyad level

GEO_DIST �0.00164 0.00021 < 1e-04 *** �0.00072 0.00018 ***

SAME_REG 0.07019 0.10950 0.521505

Nodematch.

UNI_1

0.30200 0.07094 < 1e-04 *** 0.14760 0.07873 *

Structural network level

EDGES �4.36800 0.17230 < 1e-04 *** �7.24000 0.20440 ***

GWESP,

0.69, fix

1.04400 0.06772 < 1e-04 *** 2.02 0.00902 ***

GWDEGREE �2.86600 14.81000 0.846554

GWDSP,

0.15, fix

0.02133 0.02736 0.435589

Null

deviance:

50343.3 on 36,315 degrees of freedom 50343.3 on 36,315 degrees

of freedom

Residual

deviance:

1753.3 on 36,302 degrees of freedom 1619.3 on 36,305 degrees

of freedom

Deviance: 48589.o on 13 degrees of freedom 48724.0 on 9 degrees

of freedom

AIC: 1779.3 1639.3

BIC: 1889.8 1724.3
*Significant at 95 %; ***Significant at 99 %
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are more likely to link to other university regions. The latter is in line with our

expectations and signals the presence of a homophily effect.

The dyad-level variable GEO_DIST is characterized by a negative significant

coefficient. Hence, geographical distance hampers link creation, which confirms

existing empirical studies (cf. Maggioni et al. 2007; Ponds et al. 2007; Scherngell

and Barber 2009; Hoekman et al. 2009, 2010; Broekel and Boschma 2012).

We argued above that the main advantage of exponential random graph models

is their ability to take into account factors at the structural network level in addition

to factors at the node and dyad level. The significant coefficients of two variables at

the structural network level empirically confirm this level’s relevance. The coeffi-

cient of EDGES is negative and significant. By being similar to an intercept

variable, EDGES represents the overall density of the network when all other

effects are excluded. Its negative coefficient is a common feature of networks

established by social processes indicating that such networks tend to be less

dense than exponential random networks (cf. Varas 2007).

In addition, we find a positive and significant coefficient of the GWESP-statistic.

It means that triangles are a common feature of the network, which corresponding

to the visual inspection of the network (see Fig. 4.1). In other words, regions that are

directly linked are also more likely to link through indirect connections. Hence, the

result suggests that triadic closure is a driving force in the network formation

processes. There might however be an alternative explanation. When constructing

the empirical network, we transformed a bipartite network into a one-mode type.

Such transformation more or less automatically increases the likelihood of triplets

in the final one-mode network. Accordingly, the positive GEWSP-statistic might

pick up this effect and act as a kind of control parameter for the one-mode

projection procedure. However, we pointed out in Sect. 4.1 that on average less

than three firms (2.8) are jointly participating in a cooperative project. Hence, it is

most likely a combination of both effects that explains the statistic’s significance. In

any case, this structural network factors significantly helps in modeling the struc-

ture of the network.

In sum, we find that the structure of the network is best explained by factors at

the node level, dyad level, and structural network level. Moreover, the coefficients

(which can be translated into odd-ratios by taking the exponential) underline that in

comparison to factors at the dyad, factors at the structural network level have

greater explanatory power. It shows the crucial importance of these factors for

the structure of the cross-regional R&D collaboration network in the German

chemical industry. This result thereby also highlights the usefulness of exponential

random graph models as a tool for analyzing the structure of such types of networks.

4.6 Conclusion

The aim of this study was to discuss exponential random graph models (ERGM) as

promising tools for the investigation of cross-regional collaboration networks. We

pointed out that most existing studies focus on the evaluation of factors at the node
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and dyad level. However, network science suggests that factors at the structural

network level may also be relevant in this respect. Such factors cannot be consid-

ered in methods commonly applied in this context. For instance, spatial interaction

models allow only for factors at the node and dyad level. We argued that

ERG-models represent a powerful alternative as they take into account factors at

all three levels and require only cross-sectional network data.

We illustrated the application of ERGMs by analyzing the structure of the cross-

regional R&D collaboration network in the German chemical industry between

2005 and 2010. By using an exponential random graph model, we considered

factors at all three levels that might influence the network’s structure. At the node

level, it was shown that urban regions (reflected by population density) and regions

with high research intensities are more likely to be linked to other regions. At the

dyad level, we found regions to be more likely being linked when they have a

university. Moreover, our results confirmed the negative impact of geographical

distance on the likelihood of research collaboration. Finally, at the structural

network level, evidence was provided for the existence of a triadic closure (transi-

tivity) effect: regions that are indirectly linked to each other are likely to be directly

linked as well.

A challenge for future research is the projection of networks among individuals

and organizations to the regional level. This particularly concerns the question

about what factors impact link formation at the level of the individual (e.g. trust,

reciprocity), at the level of the organization (e.g. reputation, absorptive capacity),

and at the spatial (regional) level (e.g. image, collective identity). In the present

paper, and in most of the corresponding literature, these factors are all translated to

the same level, i.e. that of the chosen unit of analysis. However, this ignores their

relevance at different observational levels. For instance, a general finding is that

regions with high research intensity are more likely to be linked to each other, but in

theory it could be that the actual linkages between those regions are created by

organizations that in contrast to all other organizations in their respective regions,

show little or no research intensity (although this is unlikely). The same applies to

the factors at the structural network level. For instance, if three organizations in

three different regions link with each other a triangle will be observed in the

network that might suggest the presence of a triadic closure effects. However, if

two of the three organizations are located in the same region, the cross-region

network shows a single link instead, which does not supports this interpretation. In

this sense, the question of what is the most appropriate unit of analysis (and level of

aggregation) becomes evident. This clearly lays the path for future research focus-

ing on changing network structure when moving from one level of node aggrega-

tion to another. Researchers will have to adjust the level of node aggregation in

correspondence to the objective of their investigation until reliable insights on this

matter are available.

Clearly, the study is only a first step towards understanding the role factors at the

structural network level play for the formation of cross-regional collaboration

networks. It nevertheless underlines the usefulness of exponential random graph

models for future research endeavors on this subject.

4 Determinants of Cross-Regional R&D Collaboration Networks 63



Appendix

0 3 6 9 13 17 21 25 29

0.
0

0.
2

0.
4

0.
6

0.
8

degree

pr
op

or
tio

n 
of

 n
od

es

0 2 4 6 8 11 14 17 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

edge−wise shared partners

pr
op

or
tio

n 
of

 e
dg

es

1 2 3 4 5 6 7 8 9 NR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minimum geodesic distance

pr
op

or
tio

n 
of

 d
ya

ds

Goodness−of−fit diagnostics

Fig. 4.2 Goodness of fit of exponential random graph model with dyad level, node level + struc-

tural network level variables
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Fig. 4.3 MCMC-Statistics of exponential random graph model with dyad level, node level and

structural network level variables
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Fig. 4.4 MCMC-Statistics of exponential random graph model with dyad level, node level and

structural network level variables
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Fig. 4.5 MCMC-Statistics of exponential random graph model with dyad level, node level and

structural network level variables

Fig. 4.6 MCMC-Statistics of exponential random graph model with dyad level, node level and

structural network level variables
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Chapter 5

A Novel Comprehensive Index of Network

Position and Node Characteristics

in Knowledge Networks: Ego Network

Quality

Tamás Sebestyén and Attila Varga

Abstract While developing the comprehensive index of Ego Network Quality

(ENQ) Sebestyén and Varga (Ann Reg Sci, doi:10.1007/s00168-012-0545-x,

2013) integrates techniques mainly applied in a-spatial studies with solutions

implemented in spatial analyses. Following the theory of innovation they applied

a systematic scheme for weighting R&D in partner regions with network features

frequently appearing in several (mostly non-spatial) studies. The resulting ENQ

index thus reflects both network position and node characteristics in knowledge

networks. Applying the ENQ index in an empirical knowledge production function

analysis Sebestyén and Varga (Ann Reg Sci, doi:10.1007/s00168-012-0545-x,

2013) demonstrate the validity of ENQ in measuring interregional knowledge

flow impacts on regional knowledge generation. The aim of this chapter is twofold.

First we show that ENQ is an integrated measure of network position and node

characteristics very much resembling to the solution applied in the well-established

index of eigenvector centrality. Second, we test the robustness of the weighting

schemes in ENQ via simulation and empirical regression analyses.

5.1 Introduction

Network analytic tools have been increasingly employed in studying the flows of

knowledge in two, more or less separately developed scientific literatures. ‘A-

spatial’ approaches mostly appearing in the science and technology literature
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study the impacts of different characteristics such as size, centrality, density, tie

strength or knowledge diversity of collaboration networks among firms, research

institutions and alike. The influence of different network characteristics are exam-

ined individually and the selection of particular network features studied is usually

related to actual research questions and do not seem to follow an underlying

theoretical agreement in the field.

On the other hand, several of the ‘spatial’ studies appearing in the regional

economics and economic geography literature show a different origin and a some-

what different interest. The focus of this literature is not much on the architecture of

knowledge networks but more on the characteristics of network partners. Knowl-

edge level of network partners is considered their main feature determining the flow

of knowledge through networks. This empirical approach is significantly influenced

by spatial econometric techniques applied in some of the first papers studying the

geography of knowledge flows (e.g., Anselin et al. 1997). Many of the spatial

network studies apply the same intuition by replacing spatial weights matrices

with matrices representing interregional collaborations. With this technique it

became possible to study the impact of R&D carried out by partners in different

spatial units on knowledge produced in the region (Maggioni and Uberti 2011;

Varga et al. 2013; Ponds et al. 2010).

While developing the comprehensive index of Ego Network Quality (ENQ)

Sebestyén and Varga (2013) integrate techniques mainly applied in a-spatial studies

with solutions implemented in spatial analyses. Following the theory of innovation

they applied a systematic scheme for weighting R&D in partner regions with

network features frequently appearing in several (mostly non-spatial) studies

(such as tie strength, number of edges, density of interactions, network distance,

knowledge diversity).

The resulting ENQ index thus reflects both network position and node charac-

teristics in knowledge networks. This index is a measure of knowledge accessible

by the agents from their interregional network. Thus the interest behind ENQ is the

same as in the spatial studies (i.e., the impact of R&D in partner regions). The

difference is in the broader set of network features that we take into account in the

analysis. Applying the ENQ index in an empirical knowledge production function

analysis Sebestyén and Varga (2013) demonstrate the validity of ENQ in measuring

interregional knowledge flow impacts on regional knowledge generation.

The aim of this chapter is twofold. First we show that ENQ is an integrated

measure of network position and node characteristics very much resembling to the

solution applied in the well-established index of eigenvector centrality. Second, we

test the robustness of the weighting schemes in ENQ via simulation analyses and

empirical regressions.

The second section introduces the concept of ENQ. The third section positions

ENQ in traditional network centrality measurement. Results of simulation analyses

with respect to the robustness of the weighting schemes applied in the formula of

ENQ are reported in the fourth section. The fifth section presents some empirical

underpinning of the simulation results, while summary concludes the chapter.
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5.2 The Ego Network Quality Index

The theory of innovation emphasizes the role of interactions among different actors

in innovation. These interactions follow a system and the characteristics of the

system determine the efficiency of new knowledge production to a large extent

(Lundvall 1992; Nelson 1993). An extensive survey-based empirical literature

evidences that innovation is indeed a collective process where the knowledge and

expertise of partners as well as the intensity of collaborations among them largely

determine the production of new, economically useful knowledge (e.g., Diez 2002;

Fischer and Varga 2002). Representing actors as nodes and their connections as

ties, interactions of collaborating agents can be mapped as a network. On the basis

of this representation the application of network analysis extends the frontiers of the

study of knowledge interactions well beyond the possibilities of traditional inno-

vation surveys.

Behind the concept of ENQ there are three intuitions directly influenced by the

theory of innovation. The first intuition is that the level of knowledge in an agent’s

network is in a positive relationship with the agents’ productivity in new knowledge

generation. The second intuition is that the structure of collaboration among

partners in the agent’s network is the source of further growth of knowledge

available from the network. Following the third intuition we assume that partners

in the ego network not only increase the amount of knowledge accessible, but also

contribute to its diversity through building connections to different further groups

not linked directly to the ego network.

Therefore we structure ENQ around basically two dimensions, which are then

augmented with a related third aspect. The two dimensions are: Knowledge Poten-

tial and Local Connectivity. Knowledge Potential (KP) measures knowledge accu-

mulated in the direct neighbourhood and it is related to the number of partners and

the knowledge of individual partners. Local Connectivity1 (LC) is associated with

the strength of ties and the intensity of interactions among partners. The third aspect

is called Global Embeddedness (GE) as it intends to capture the quality of distant

parts of the network (beyond immediate partners). However, this aspect is

implemented by applying the concepts of KP and LC for consecutive

neighbourhoods of indirect partners in the network.2

1Note that connectivity is used here in a broader sense than in graph theory. In graph theory

connectivity refers to the number of vertices the removal of which disconnects the graph. In our

case, this term refers to a similar concept but with a less strict definition. By connectivity we

simply mean the extent of ties connecting a given group of vertices.
2 Before moving forward, though, we have to make a terminological clarification. Generally the

term ‘neighbourhood’ of a node refers to the group of nodes connected directly to a specific node.
In our study by neighbourhood we mean not only the directly but also the indirectly connected

nodes. As this definition in itself would mean that the term neighbourhood refers to the totality of

nodes in the graph, we refine the definition and use the more specific term ‘neighbourhood at

distance d’ which refers to the nodes exactly at distance d from a specific node.
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The notation in the proceeding formulation is as follows. As usual, we represent

the network under question by the adjacency matrix A ¼ [aij], where the general

element aij describes the connection between nodes i and j. Generally, the elements

of the matrix are considered as weights, normalized to the interval between 0 and

1. A special case of this formulation is thus the binary network, where the elements

of the adjacency matrix can be either zero or one. We have to note here, that only

undirected networks are dealt with in this chapter, i.e. the adjacency matrix is

assumed to be symmetric. The adjacency matrix defines the matrix of geodesic

distances (lengths of shortest paths) between all pairs of nodes, which we denote by

R ¼ [rij].
3 In order to account for knowledge levels, we use k ¼ [ki] as the vector

of knowledge at each specific node of the network.

Given the conceptual model presented above, we can formalize ENQ as follows:

ENQi ¼
XM�1

d¼1
WdLC

i
dKP

i
d ð5:1Þ

In this formula superscript i refers to the node for which ENQ is calculated and

subscript d stands for distances measured in the network (geodesic distance). M is

the size of the network, Wd is a weighting factor used for discounting values at

different d distances from node i,4 whereas KPi
d and LCi

d are the respective

Knowledge Potential and Local Connectivity values evaluated for the

neighbourhood at distance d from node i.
As a consequence of the formulation in Eq. 5.1, we emphasize that the proposed

formula for ENQ is a distance-weighted sum of Local Connectivity-weighted

Knowledge Potentials evaluated for neighbourhoods at different distances in the

network. By directly differentiating between immediate and indirect partners in the

network, we can reformulate ENQ as follows:

ENQi ¼ W1LC
i
1KP

i
1 þ

XM�1

d¼2
WdLC

i
dKP

i
d ¼ LCi

1KP
i
1 þ GEi ð5:2Þ

whereW1 ¼ 1 is the (assumed) weighting factor for the immediate neighbourhood.

Everything beyond the immediate neighbourhood can be labelled as Global

Embeddedness (GE). In what follows, the two basic concepts, Knowledge Potential

and Local Connectivity are introduced in more detail.

3 In this chapter we use a non-weighted algorithm for the calculation of geodesic distances, i.e. the

distance of two nodes is regarded as the number of ties connecting them, irrespective of the

weights associated with these ties.
4 The weighting factor is defined to be unity for d ¼ 1 and descending towards zero as d increases.
There is no unique best choice with regards the decay function. We present some illustrative

simulations related to the choice of the decay function later in this chapter.
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5.2.1 Knowledge Potential

The concept of KP relates to the amount of knowledge an agent’s partners possess.

Using the notation presented before, the concept of KP can be formulated in the

following way:

KPi
d ¼

X
j:rij¼d

kj ð5:3Þ

The Knowledge Potential, as perceived by node i, can thus be calculated for the

neighbourhoods at different d distances from node i, and for all these distances it is
the sum of knowledge possessed by nodes at these distances.

5.2.2 Local Connectivity

As mentioned before, Knowledge Potential defined by Eq. 5.3 is going to be

weighted by the Local Connectivity of direct and indirect neighbours. It is assumed

that not only the knowledge levels of partners are of positive value to the node

under question but also the cooperation between neighbours. More specifically we

assume that each crosscutting tie has a positive value, depending on the weight the

tie has. Local Connectivity is therefore the sum of the tie weights present in a given

neighbourhood, normalized by the size of this neighborhood. The concept can be

formulated as follows:

LCi
d ¼

1

N i
d

X
j:rij¼d�1

X
l:ril¼d

ajl þ
X

j:rij¼d

X
l:ril¼d

ajl

2

0
@

1
A ð5:4Þ

where Ni
d is the number of nodes laying exactly at distance d from node i. The

expression in the parenthesis is made up of two parts. The first term counts the

(weighted) ties between nodes at distance d � 1 and d.5 This reflects the intensity at
which two adjacent neighbourhoods are linked together. The second term counts

the (weighted) number of ties among nodes at distance d.6 As a result, Local

Connectivity captures the intensity with which the (possibly indirect) neighbours

at distance d are linked together and linked to other neighbourhoods.7

5Distances are always measured from node i.
6 Division by two is required because matrix A is symmetric, and thus we can avoid duplications in

the counting. This division is not required in the first term because the definition there counts only

links from distance d � 1 to distance d and not vice versa.
7 It is worth devoting a word to the inclusion of distance-crossing ties (the first term in the

expression). Our intuition behind the concept of Local Connectivity is that collaboration among

partners enhances knowledge sharing and this leads to a better environment for knowledge
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To better capture the specific meaning of the expression in Eq. 5.4 recall that we

employ LC as a weighting factor to KP. Assume for example that node i has Ni
1

direct partners and the links connecting it to these partners are of strength 1 (aij ¼ 1

for all j in the direct neighborhood). If these partners have no connections among

each other, then the second term in the parenthesis is zero, and the first term is Ni
1

(because all connections have weight 1). Thus, LC is unity, which reflects the

intuition that the knowledge levels of partners are fully absorbed. If the connections

linking node i to its partners were less strong (aij � 1 for all j in the direct

neighborhood) then LC would be lower than one, contributing to a lower weighting

factor. This reflects the fact that in this case partners’ knowledge is not fully

accessible. Assume now, that the partners establish some links among each other.

In this case the second term in the parenthesis starts to increase, and the weighting

factor (LC) increases too. This reflects our previous concept, namely that a higher

level of collaboration among partners contributes to the knowledge attainable from

a network.

In the case of indirect neighbourhoods, i.e. when d > 1, this normalization bears

a different meaning. Nodes at distance d must be connected with nodes at distance

d � 1 with at least as many links as many nodes there are at distance d, i.e. Ni
d.

Therefore, if all these links connecting nodes at distance d � 1 and d are of unit

strength, the first term in the parenthesis of Eq. 5.4 will be at least unity. However, it

still holds that the weighting factor LC is unity in the special case if nodes at

distance d are linked to nodes at distance d � 1 through connections of unit

strength and with the minimum number of connections required. It is also still

valid that interconnections in the neighbourhood at distance d increase the

weighting factor and weaker connections between the different neighborhoods

decrease the weighting factor. The only difference is that in these cases there is

an extensive margin: the number of connections between the neighbourhoods can

also increase, and this increases the value of LC resulting in a higher weighting

factor.

To sum up, LC is a weighting factor, which describes how well-connected a

node is to its neighbours and how well these neighbours are connected to each

other. However, the weighting is done according to a reference point: the weight is

taken to be unity for the special case if links to the partners are of unit strength and

the network around the node in question is a tree, with only one link attaching each

node to the previous (in the sense of distance) neighbourhood and no cooperation

among partners.

creation. In the case of the direct neighborhood, the links connecting the node in question and its

neighbors are clearly relevant in the general case of weighted ties: the amount of knowledge learnt

from the immediate partners depends on the intensity of interactions with those partners. On the

other hand we argue that in our concept the question is how dense the tissue of the network around

the node is. We are going to attach less weight to this connectivity the farther away it is from the

node, but the main point is that better connectivity among nodes is of higher value, and this

connectivity is not necessarily restricted to connectivity among nodes at a specific distance.

76 T. Sebestyén and A. Varga



5.2.3 Summing Up: Ego Network Quality

We can define the quality of the neighbourhood at distance d (denoted by Qi
d),

which is the Knowledge Potential of the nodes at distance d from node i weighted
by the Local Connectivity of the neighborhood at distance d. If we are looking only
at the direct neighbourhood of node i, we can write:

Qi
1 ¼ KPi

1LC
i
1 ð5:5Þ

This expression reflects the knowledge level of direct neighbours, weighted by

the interaction among these neighbours.8 However, as noted earlier, the level of

knowledge attained from direct neighbours is enhanced by the level of knowledge

these neighbours attain from their individual networks. Therefore, we augment our

quality measure with the same connectivity-weighted knowledge levels of further

indirect neighbourhoods, using the distance weights as introduced before.

According to this, the index of Ego Network Quality is defined as follows, which

comes back to our starting definition in Eq. 5.1:

ENQi ¼
X

d
WdQ

i
d ¼

X
d
WdKP

i
dLC

i
d ð5:6Þ

5.3 Structural and Node Characteristics in ENQ

Consider the special case when distance weighting is applied in the ENQ formula

but differences in node characteristics (i.e., knowledge levels) are disregarded,

which is the assumption behind traditional network position measures. In this

section we show that in this special case ENQ measures network position in a

way very much similar to the intuition behind eigenvector centrality (Bonacich

1972, 2007).

For the sake of simplicity we normalize knowledge levels to unity, so we have

ki ¼ 1 for all i, therefore KPi
d ¼

X
j:rij¼d

kj ¼ N i
d.
9 Now we have the following

formula for ENQ:

ENQi ¼
XM�1

d¼1
Wd

X
j:rij¼d�1

X
k:rik¼d

ajk þ
X

j:rij¼d

X
k:rik¼d

ajk

2

0

@

1

A ð5:7Þ

The first term in the parenthesis counts the number of links connecting nodes at

distance d with nodes at distance d � 1, whereas the second term gives the number

8Note, that the weight for d ¼ 1 is unity by definition.
9 It is easy to see that using (identical) knowledge levels different from unity would change the

results by a multiplicative constant compared to the situation with the normalized levels.
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of links between nodes at distance d. In Eq. 5.8 we add the expressionX
j, rij¼d

X
k, rik¼dþ1

ajk to those in the parenthesis, and multiply the second term

by 2. We will denote this new expression by DISTi:

DISTi ¼
�XM�1

d¼1
Wd

X
j:rij¼d�1

X
k:rik¼d

ajk þ
X

j, rij¼d

X
k, rik¼dþ1

ajk

þ
X

j:rij¼d

X
k:rik¼d

ajk

�
ð5:8Þ

This expression simply counts the weighted number of links between nodes at

distance d � 1 and d (first expression in the parenthesis), the weighted number of

links between nodes at distance d and d + 1 (second expression in the parentheses)

and as the result of the multiplication double-counts the links among nodes at

distance d (third expression in the parentheses). In other words, after this modifi-

cation the number in the parenthesis gives the (weighted) sum of links which nodes

at distance d have (double counting the links within the neighbourhood at distance

d as these links belong to two nodes in this neighbourhood), which is simply the

sum of (weighted) degrees of nodes at distance d. Using all this, we can write

DISTi ¼
XM�1

d¼1
Wd

X
j:rij¼d

X
k
ajk

� �
¼

XM�1

d¼1
Wd

X
j:rij¼d

DEGj ð5:9Þ

where DEGj is the degree of node j. This expansion, however, results in no

substantial change in the ENQ measure. The original measure counts every link

once, whereas the modified version counts every link twice. If the adjacency matrix

is symmetric, which we assume, this modification then means a simple multiplica-

tion by 2 on the level of the overall index. To sum up, the expression in Eq. 5.9 is the

distance-weighted sum of degrees in the network. On the other hand, the previous

reasoning clearly shows that this measure is twice the ENQ measure in this special

case with no knowledge weights at the nodes:

DISTi ¼ 2ENQi ð5:10Þ

On the other hand, the expression in Eq. 5.9 has some similarity with eigenvector

centrality (Bonacich 1972, 2007), which also reflects a distance-weighted sum of

degrees in a network, although it uses a recursive definition with implicit exponen-

tial weights leading to an eigenvector problem.10 This means that our ENQ index,

10 Eigenvector centrality is defined by the following recursive concept. Let xi denote the centrality

of node i and let this centrality be determined by the cetralities of adjacent nodes: xi ¼ 1=λ
X

j

aijxj.

Written for all nodes we end up with the matrix equation x ¼ 1/λAx, which is an eigenvector

problem. The eigenvector corresponding to the largest eigenvalue (which rules out xi s of opposite
signs) gives the required centrality measures. It is easy to see that this recursive definition

discounts the centrality value of distant nodes exponentially (given that λ > 1). In addition, if

we consider the partners’ centrality indices identical, the centrality index of node i is proportional
to its degree, whereas relaxing the assumption of identical centrality measures in the direct
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when knowledge levels are homogenous, reflects similar properties to eigenvector

centrality, which is a comprehensive measure of network position taking into

account the whole structure around a given node from its immediate neighbourhood

to farther parts of the network.

Figure 5.1 illustrates this point on a random graph (based on the Erdős-Rényi

(1959) algorithm) and on a scale free graph (based on the preferential attachment

mechanism proposed by Barabási and Albert (1999)), both of size 100. Both graphs

are represented for a sparse and a dense case.11 As it is clear from the figure, there is

a tight positive correlation between ENQ and eigenvector centrality.12

neighborhood but retaining it in the consecutive ones, the index for node i turns out to be the sum

of degrees of direct partners, and so on. This is not to prove that the expression in Eq. 5.9 and

eigenvector centrality are the same, but the underlying concepts have common characteristics.
11 The sparse network is simulated at 5 % density and the dense network at 30 % density. These

two values were picked as follows. Density 5 % is the threshold approximately at which random

networks of size 100 become connected, so that the whole network is likely to be connected at 5 %

density. The 30 % density value corresponds to the density of interregional co-patenting networks

as presented in Sebestyén and Varga (2013).
12 Note that these illustrations are created for the case when ENQ is calculated with linear distance

weights and homogenous knowledge levels across the nodes. Linear distance weights are chosen

Fig. 5.1 Correlations of ENQ (horizontal axes) and eigenvector centrality (vertical axes) in

different networks, under the assumption of unit knowledge weights for all nodes
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The correlation is stronger for the denser networks and for the scalefree structures

(with the dense scalefree case being almost deterministic).

The arguments and results presented above show that our measure captures the

position of the nodes in the network, which results from the structure of the network

around specific nodes, taking into account both the direct and indirect

neighbourhoods. However, the ENQ index is also capable of taking into account

node-specific characteristics, captured by knowledge potential in our context,

which is not part of the traditional measures of network position (especially of

eigenvector centrality analysed here).

5.4 ENQ with Different Weighting Methods: A Systematic

Comparative Analysis

ENQ involves three weighting dimensions. The first is weighting at the node level

and is captured by the knowledge of each connected node. That is, we do not

consider nodes as homogenous with respect to their inherent characteristics apart

from their position in the network, but take their heterogeneity implicitly into

account. The two other dimensions of weighting correspond to the structural

properties of the network. The second dimension is weighting by distance and the

third one is weighting by the local structure captured by the Local Connectivity

element in the ENQ measure. Though the first dimension (i.e., knowledge level) is

taken as exogenous the other two dimensions are tightly related to the structural

properties of the network around the specific nodes. In this section we study the

impacts of different approaches measuring these structural properties on ENQ.

5.4.1 Analytical Framework: The Modified Preferential
Attachment Model

The analyses to be presented are placed in the framework of a modified version of

the well-known preferential attachment model, originally proposed by Barabási and

Albert (1999). The reason for using this framework is twofold. First, we can

simulate the behaviour of the ENQ index under different network structures and

second, it is possible to define those structures and the corresponding characteristics

of the ENQ index which seem to be relevant in the context of knowledge networks.

The model used offers the opportunity to build networks which range from the

random topology (according to the Erdős-Rényi algorithm) to centralized topolo-

gies (with a connected core and peripheral actors tied only to the core with sparse or

because in this case the weight of GE in the ENQ index is the highest (see later), thus the

differences in the GE element are captured the best in this case.
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no connection within the periphery). Between the two extremes the model

reproduces the properties of the preferential attachment model.13 The detailed

description of the model can be found in Sebestyén (2011), and a brief outline is

presented in the Appendix.

Figure 5.2 illustrates the change in the average clustering coefficient and the

average path length (distance) as we move from random to centralized graphs along

the modified preferential attachment model.14 On the horizontal axis we move from

random to centralized structures, the meaning of the scale moving from 0 to 1 is

described in the Appendix. On the vertical axis, the two measures are normalized,

with the values corresponding to the random structure being unity. Average path

length measures the average distance of the nodes from each other in the network

and the average clustering coefficient captures that on average how well connected

the direct partners of the nodes are.15 As the figure shows, there is a monotonous

decrease in average path length and a monotonous increase in the average cluster-

ing coefficient.

The decrease in path lengths stems from the centralized nature of the networks

on the right wing of the figure: path lengths are the shortest possible in this

topology, and any departure from this, including the random structure, results in

an increase in the path lengths.16 However, the change in average distances is not so

marked due to the fact that random networks are already characterized by short

average path lengths, so there is relatively less room for a further decrease. The

considerable increase in the clustering coefficient comes from two facts. First, the

clustering coefficient in a random network is typically low as the randomness of ties

13 It is important to highlight that the proposed model is not capable of capturing all characteristics

of the empirical knowledge networks one encounters in practice. For example, the networks

generated are characterized by one core group and multiple cores are not accounted for. Also,

hierarchical structures often found in real networks are not present in the simulated structures. The

goal, however, is not to provide a network model which generates topologies that precisely reflects

empirical ones, but to establish a relatively simple method to span a reasonably wide range of

network structures and to test the behaviour of the ENQ index under these structures. On the other

hand, the choice of the underlying network model seems reasonable as it comes up with topologies

reflecting those characteristics often found in reality. First, it accounts for preferential attachment

in its intermediate range (which is found to be a robust driving force behind real world networks)

and second, it also accounts for centralized structures with connected cores and marked periphery

which is a typical pattern in knowledge networks. Additionally, although less relevant from an

empirical point of view, but as an extreme case the random topology is accounted for.
14 The network size is 100 and the density is 28 % in this specific illustration (corresponding to the

empirical network analyzed by Sebestyén and Varga (2013)) but further simulations show that the

tendency visible in the figure is robust across different network sizes and densities.
15 Average path length is the average of the shortest paths measured between every pair of nodes in

the network. The clustering coefficient measures the density of the direct neighborhood of a node

and the average clustering coefficient is simply the mean of these local coefficients (see

Wasserman and Faust (1994) for details).
16 Take the star network as an extreme example. In this topology average path length is somewhat

smaller than two as the majority of the nodes are at distance two from all other nodes except from

the central one and the central node is at distance one from all other nodes.

5 A Novel Comprehensive Index of Network Position and Node Characteristics 81



leaves no room for significant local densities. Second, in this specific model, for

more centralized structures we have a densely connected core and all other nodes

outside the core are connected to this group of nodes. The result is that the nodes in

the core have relatively low clustering as their neighbours outside the core are not

linked to each other, but the majority of the nodes outside the core have high

clustering as their neighbours in the core are densely connected to each other.

Average clustering rises because the high clustering of the many peripheral actors

in the centralized structures dominates the low clustering of the few central ones.

Using the modified preferential attachment algorithm as a framework for our

further analyses we can model different network structures along a well-defined

interval ranging from random networks to centralized topologies. The random

network on one extreme of the model can serve as a natural (and widely used)

reference point for examining network structures, whereas the model moves

towards more centralized topologies through scalefree structures which are empir-

ically more relevant. See for example Barabási (2003) or Csermely (2006) for a

general discussion.

As an empirical reference for the modified preferential attachment algorithm, we

employ the patent-co-inventorship network of European NUTS2 regions, reported

by Sebestyén and Varga (2013). This empirical network is situated approximately

between a value close to 0.0 and around 0.6 on the horizontal axis of Fig. 5.2.17

Fig. 5.2 Average distance

and clustering coefficient in

the modified preferential

attachment model. Both

measures are normalized to

the value corresponding to

the random network being

unity

17 The empirical network has an average path length of 1.78 whereas the corresponding random

network (with the same size and density) has a path length of 1.72 (not significantly different from

the empirical number). As a consequence, with regards to the path lengths, this empirical network

can be positioned on the left hand side of Fig. 5.2. The clustering coefficient of the empirical

network is 0.66, 2.35 times higher than the coefficient of 0.28 characterizing the corresponding

random network, thus from the clustering point of view, the empirical network is situated around

0.6 on the horizontal axis of Fig. 5.2. This shows that the network model can reflect empirically

relevant topologies throughout its interval from random to centralized structures.
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5.4.2 Accounting for Distance-Weighting in Random and
Scalefree Structures

Although it is straightforward to state that the properties of the network located

farther away from a given node is of less importance for that specific node, the

question remains that exactly how much less this importance is. Technically speak-

ing, the decay function for the distance weights W(d) must be determined. In

general the choice of the decay function seems to be arbitrary. In this section we

present some analysis to reveal how the ENQ index behaves under different

weighting schemes and network structures. The aim is to provide a background

for empirical analyses by giving a conceptual description of the ENQ index when

using it for different network settings. The vehicle for analysing different structural

settings is the modified preferential attachment model, and for the decay function

we consider three basic and straightforward cases: the linear, the hyperbolic and the

exponential decay.

Using linear weights we assume that moving one step farther away in the

network, the absolute loss of information or knowledge is the same from neighbor-

hood to neighborhood. In linear weighting we use the following formula:

W dð Þ ¼ M � d

M � 1
ð5:11Þ

where M is the size of the network. This specification has the property that at

distance d ¼ 1 its value is unity, whereas its value descends to zero when distance

would cross the boundaries of the network, namely at d ¼ M. In other words, the

farthest possible node (at distance d ¼ M � 1) has a small but positive weight. This

form of the linear decay has different decay speeds for different network sizes, but

rules out negative weights.

A hyperbolic decay can be defined simply as

W dð Þ ¼ 1

d
ð5:12Þ

It is easy to prove that it satisfies the requirement that at distance 1 its value is

unity. On the other hand, this option is independent of network size and gives

positive values for any distance. However, due to the hyperbolically decreasing

weights, in larger networks this method implies low values for Global

Embeddedness especially if dense and highly knowledgeable nodes lay at relatively

high distance from the node in question.

Exponential weighting is defined as

W dð Þ ¼ e1�d ð5:13Þ
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It has similar characteristics as the hyperbolic decay, but the pace is faster.

Exponential weighting corresponds to the situation when the information or knowl-

edge lost from consecutive neighbourhoods decreases by a constant percentage.

Figure 5.3 depicts the results of a simulation experiment where we built net-

works using the modified preferential attachment model proposed before, moving

in 21 steps from totally random networks to totally centralized ones. In all steps we

generated 100 networks and then calculated for each network the ENQ values with

linear, hyperbolic and exponential weights in the distance decay function. The lines

in the figure represent average ENQ values for a given network structure and for

different decay functions.18

It is clear from the picture that the different weighting methods end up with

different ENQ values. The higher weights are given to more distant

neighbourhoods, the higher will be the Global Embeddedness value and therefore

the overall ENQ index. This is reflected by the figure: linear decay gives the highest

weights from d ¼ 2 on and this decay function gives the highest ENQ values.

Hiperbolic decay lies in the middle, while exponential decay is the fastest leading to

the smallest ENQ values.

In addition to this tendency, we also observe that ENQ values typically increase

for higher centralization. This latter tendency can be easily explained by the

interplay of two effects related to the changing characteristics of the network

topology in the modified preferential attachment model. Decreasing average dis-

tances (see Fig. 5.2) lead to a higher ENQ ceteris paribus through the increase of the

GE element (as path lengths shorten, initially more distant neighbourhoods come

closer, thus the same KP and LC values are less discounted due to distance),

irrespective of the choice of the decay function in the distance weights. On the

other hand, the increasingly dense local neighbourhoods (reflected by the increasing

clustering coefficient in Fig. 5.2) lead to higher LC values, not only in the direct

neighbourhoods but also in more distant ones. These two effects reinforce each

other as we move towards centralized structures, leading to higher ENQ indices for

the centralized topologies.

It is also clear from the figure that the differences between the ENQ values

calculated according to the different decay functions remain constant throughout

the interval from random to centralized networks. This is explained by the fact that,

as evidenced by Fig. 5.2, the increase in clustering (which is reflected by the LC

element of ENQ) dominates the decrease in average distances. Therefore the choice

of the distance decay function, is less relevant in the case of those network

structures which are accounted for in the preferential attachment model. On the

other hand, this constant difference means that the choice of the decay function has

18 The figure illustrates the results of a simulation with networks of size 100 and density 30 %. For

all structures 100 independent runs were executed and then averaged. The results shown are robust

for networks with different sizes and densities.
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only a shift effect on the ENQ in this specific interval between random and

centralized structures.

These results with different distance weighting schemes and network structures

indicate that the ENQ index is able to capture relevant structural differences,

whereas (apart from the trivial shift effect), the choice of the decay function does

not result in any bias when applying the index to different structural settings,

meaning that it does not overestimate or underestimate ENQ under any weighting

schemes compared to other topologies or weightings.19

5.4.3 Accounting for Structural Holes: Modifying
the Structural Weights

As highlighted before, besides the weights attributed to indirect neighbourhoods at

different distances, the other important weighting in the model is represented by the

Local Connectivity value which weights the sum of knowledge levels at a given

neighbourhood with the connectedness of that neighbourhood: the more connected

the neighbourhood, the higher the weight. This kind of formulation seems intuitive

and it relates to the notion of social capital as defined by Coleman (1986) who

emphasized the role of cohesion, i.e. closed local structures as enhancing individual

action. The more connected an individual’s neighbourhood is, the more social

capital he or she has and the better for him or her. On the other hand, Burt (1992)

challenged this view emphasizing the role of structural holes in individual perfor-

mance and as a source of social capital. Structural holes are present in a network

Fig. 5.3 Average ENQ

values under different

distance weighting schemes

19 Given a specific structural setting along the horizontal axis of Fig. 5.3 between random and

centralized topologies, moving one step in either direction resulting in a different structural setting

leads to the same absolute change in the ENQ index irrespective of the choice of the decay

function.
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where the Coleman-type cohesion is missing. In other words, nodes in structural

holes fulfil the role of a gatekeeper or information broker among different groups.

In this view, a node’s position in the network is efficient, if its neighbourhood is not

fully connected but consists of more, otherwise unconnected groups.

Although the concept of structural holes is intuitively appealing, its measure-

ment leaves open questions. Once the analysis tries to capture the number of

unconnected cliques in a neighbourhood, one immediately finds the problem of

determining the threshold in connectivity from which a group of nodes are consid-

ered as a clique (and vice versa, the threshold from which groups are referred as

distinct). There are several methods established in social network analysis from

positional analysis to blockmodeling (see for example Wasserman and Faust 1994)

which offer solutions to this question but all retain the crucial cornerstone of

determining the threshold exogenously.

Linked to the previous problem, if one looks behind these concepts, it becomes

clear that structural holes and cohesion (connectivity) are not independent structural

characteristics. If the neighbourhood of a node is densely connected (cohesive), the

chance for finding many unconnected groups in this neighbourhood is small.

Conversely, if there are unconnected groups, the density must be lower.20 As a

result, we cannot construct independent metrics for the two concepts.

Taken all this together, the ENQ index developed in this paper provides a

flexible framework to include these concepts. Although our definition of Local

Connectivity in Eq. 5.4 reflects the cohesion approach a la Coleman and disregards

the importance of structural holes, in a general sense we may define Local Structure

as a weighting factor for Knowledge Potentials of the specific neighbourhoods and

let this LS term account for different approaches depending on the actual investi-

gation. In other words, Local Structure is a weighting factor capturing structural

features of neighbourhoods, but these structural characteristics can be defined in

different ways. Previously we defined and used Local Connectivity as a possible

way to specify the Local Structure weight. In what follows, we implement an

additional weighting for Local Structure in order to capture not only cohesion but

also structural holes or the combination of these features.

Taken into account the previously mentioned problems of measuring structural

holes, we propose a simple approach which captures the basic intuition behind the

concept and provides an easy way to link this measurement to cohesion. We use a

strict threshold for defining cliques in a neighbourhood, namely the number of

connected components in the subgraph defined by the nodes in a given

neighbourhood. This approach, although the threshold also comes from an exoge-

nous source, can be labelled as a baseline solution to identifying cliques in the

network.21

20 See Fig. 5.5 and the explanation in the Appendix.
21 It is known from graph theory that the number of connected components in a graph is given by

the multiplicity of the zero eigenvalues of the Laplacian matrix of the graph. The Laplacian matrix

is simply the difference of the diagonal degree matrix (with node degrees on the diagonal) and the
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If we define CCi
d as the number of Connected Components (or in other words the

number of unconnected groups) in the neighbourhood at distance d from node i, the
ENQ index can then be reformulated with structural holes being the weighting

factor of Knowledge Potential in addition to the distance weights:

ENQi ¼
X

d
WdQ

i
d ¼

X
d
WdKP

i
dCC

i
d ð5:14Þ

This formulation though, puts the index to the other extreme, taking into account

only structural holes and disregarding cohesion. On the other hand, it is also true

that both Local Connectivity and Connected Components take a very strict view

and measurement of the phenomena they intend to capture. Local Connectivity

captures simply the intensity of cooperation by counting the links in different

neighbourhoods, while Connected Components restricts the counting only to totally

unconnected groups. However, by combining the two approaches, ENQ can reflect

a more refined picture about the structure of local neighbourhoods. Let’s redefine

ENQ with the product of Local Connectivity and Connected Components as the

weighting factor of Knowledge Potentials (the Local Structure component, defined

before):

ENQi ¼
X

d
WdQ

i
d ¼

X
d
WdKP

i
dCC

i
dLC

i
d ð5:15Þ

This formulation refines the two extreme cases by positively weighting diverse

groups and at the same time the strength of connectivity. In addition to the fact that

the empirical literature is not conclusive on the relevance of the two approaches,22 it

is intuitively reasonable to think that an optimal network position combines these

two structural features: too much cohesion is not good as the advantage of access to

diverse information and knowledge is lost but the lack of cohesion can also be

disadvantageous as the connections in the neighbourhood can contribute to learning

and knowledge creation through fast knowledge transfers, collective learning and

recombination of ideas. The trade-off between the two concepts (referred to before

and detailed in the Appendix) provides a natural way to combine the two effects as

adjacency matrix of a graph. (see e.g. Godsil and Royle 2001). Taking then the node-generated

subgraphs spanned by the nodes at specific distances from the node in question and using the

Laplacian method, we can easily calculate the number of connected components, although closed

formula cannot be given.
22 Although many of the results in this field show that a position in structural holes contribute to

better performance in a diversity of fields (e.g. Hopp et al. (2010), Kretschmer (2004), Donckels

and Lambrecht (1997), Zaheer and Bell (2005), Powell et al. (1999), Tsai (2001), Burt

et al. (2000), Burton et al. (2010)), there is still evidence on the opposite (Salmenkaita 2004;

Cross and Cummings 2004). Rumsey-Wairepo (2006) argues that the two structural settings are

complementary to each other rather than substitutes in explaining performance. In general, it

seems that different structural dimensions can be important for different networks. When infor-

mation flows and power is important, structural holes indeed provide better position, however, as

in our case, if knowledge production is in the focus, exclusion resulting from structural holes may

be harmful and cohesiveness meaning better interaction may have positive contribution.
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the multiplication of Connected Components and Local Connectivity in Eq. 5.15

attach higher weights to structures which lay in between neighbourhoods with

extreme structural holes and extreme connectivity.

In order to evaluate the modification of the structural weights in the ENQ index,

we executed similar simulations with the modified preferential attachment model in

the background as for the distance weights. With these simulations we can gain

insight into the behaviour of the ENQ index under different structural settings and

weighting schemes for local neighbourhood structures. The results are summarized

in Fig. 5.4. The simulations were executed for sparse and dense networks of size

500, and in all cases hyperbolic distance weighting was used.23 The figure uses a

logarithmic scale on the vertical axis in order to keep the tendencies visible.

The results on the figure show that the cases for dense and sparse networks are

qualitatively the same, but the observed tendencies are sharper for the dense one.

The solid lines show the same path for ENQ as that for the hyperbolic distance

weights in Fig. 5.3. These values are obtained if we consider Local Connectivity

(or putting differently the density of neighborhoods or cohesion) as a weighting

factor for Knowledge Potential. The dashed lines in comparison are obtained for the

case when connected components (structural holes) are used as a weighting factor,

whereas the dotted lines show the mixed case.

The overall picture shows that the cases when only CC is used as structural

weight are significantly lower – this is explained by the fact that CC weights tend to

be lower as they count connected groups whereas LC counts links in the networks.

Even a small departure from the star topology (where neighbourhoods are disjoint),

leads to a sharp decrease in the number of connected components in the neighbor-

hoods. This rule is responsible for the sharp increase in the ENQ values when it

includes CC (structural holes and mixed cases in the figure) for the extremely

centralized topologies. The second observation is that the mixed and the pure

connectivity-weighted case results in similar ENQ values for a large interval of

the underlying network structures. This is due to the fact that for this interval the

number of unconnected groups tends to be small, thus the additional weighting by

CC in the mixed case rarely leads to significant departures from the simple

LC-weighted values (this similarity is not present for the highly centralized struc-

tures for the reason mentioned before). Additionally, in the dense network, the pure

connectivity-weighted and the mixed case result in identical ENQ values as the

high density leaves no room for unconnected groups, whereas in the sparse network

unconnected groups are more likely to be present.

Note, however, that these results and tendencies mark overall, aggregate features

of the ENQ index. Its local, node-specific characteristics are not taken explicitly

into account, but it is still true that even if on the aggregate level there is no marked

23 Further simulations showed that the results are robust for altering the size of the network (the

tendencies are better illustrated by larger networks – this is why we used size 500, but are

qualitatively the same for smaller networks). Sparse networks mean 5 % density while dense

networks 30 % density as before, and for each structure 100 independent simulations were

executed and the results averaged.
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difference between the weighting methods, the local neighbourhoods can differ and

node-specific ENQ indices can reflect these differences.

To sum up, we can see that there is no significant difference between the original

(connectivity) weighting method and the augmented one (where both connectivity

and structural holes are taken into account) in the networks characterized by the

modified preferential attachment model, except for extremely centralized (star-like)

topologies. On the other hand, whether structural holes or cohesion, or their

combination provide an efficient network position in a general sense is still an

open question and requires an empirical assessment. Our ENQ measure can accom-

modate both cases, and is flexible to account for different structural weighting

methods. As a result, it can be used to test empirically the effect of structural

settings on the efficiency of network positions.

5.5 Robustness of Different Weighting Schemes in ENQ:

An Empirical Investigation with European

Co-patenting Networks

Though simulations can gain insights into some important properties regarding

cohesion, structural holes and distance in ENQ, the relative importance of the two

structural settings and distance weighting schemes remains an open issue for

empirical studies. In general, different environments and goals might favour dif-

ferent structural and distance decay settings. In this section a short empirical

investigation is carried out in this respect. We use the ENQ index of co-patenting

networks to explain R&D productivity in European regions and investigate if there

is a variation in the extent to which different weighting methods affect regression

results.

The analysis is based on the knowledge production function initially specified by

Romer (1990) and parameterized by Jones (1995). In the interpretation of the

Fig. 5.4 ENQ values under different structural weighting methods
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parameters we follow Varga (2006). In this specification technological change is

associated with contemporary R&D efforts and previously accumulated knowl-

edge. We assume that the efficiency of R&D efforts is positively related to the

quality of interregional knowledge networks measured by ENQ. We are interested

in the explanatory power of the model specified with different structural weighting

methods in the ENQ index.

In the empirical specification we follow Varga (2000) and Varga et al. (2013)

and set out the knowledge output in region i (denoted by Ki) in function of R&D

expenditures in that region (RDi), national knowledge stocks (KSN) and local

agglomeration (AGi):

log Kið Þ ¼ α0 þ α1log RDið Þ þ α2log KSNð Þ þ α3log AGið Þ þ εi ð5:16Þ

Then, we relate research productivity, measured by α1,i in region i (the parameter

of the R&D variable in Eq. 5.16) to the quality of the interregional knowledge

network:

α1, i ¼ β0 þ β1ENQi ð5:17Þ

Substituting Eq. 5.17 into Eq. 5.16 results in the following equation to be

estimated:

log Kið Þ ¼ α0 þ β0log RDið Þ þ β1log RDið ÞENQi þ α2log KSNð Þ
þ α3log AGið Þ þ εi ð5:18Þ

The analysis is based on a sample of 189 European regions (a mix of NUTS2 and

NUTS1 regions) for which information was complete enough for our purposes. The

network under question is a network of these regions and the links are patent

co-inventorships between 1998 and 2002. By definition, the network is a weighted

network with the number of patents co-invented by inventors from two regions

being the weights of a link. The network was built using data from the REGPAT

database of OECD (2009). From this network we calculated ENQ indices with

different structural weighting methods with patent stocks playing the role of

knowledge levels (ki) in the calculation of ENQ. The knowledge output on the

left hand side is proxied by new patents generated in 2002 (the end of the

aggregation period for the knowledge network). Research effort is measured by

annual R&D expenditures by the regions in 2000 (the time lag is included in order

to account for timely effects of research efforts on innovative output). Agglomer-

ation is measured by the size-adjusted location quotient of technology- and

knowledge-intensive sectors. The source of the latter data is the Eurostat New

Cronos database.24

24 See Varga et al. (2013) and Sebestyén and Varga (2013) for further details on data and

methodology.
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Detailed estimation results of Eq. 5.18 under different structural and distance

weighting methods can be found in Table 5.2 in the Appendix. Table 5.1 below

presents the coefficients of the ENQ indices, i.e. the estimated contributions of

network position to R&D efficiency (β1 in Eq. 5.18) and regression fits

(in parentheses). With the exception of linear distance weights regression results

appear to be robust to the choice of distance and structural weights. Though

estimated parameter values in the mixed case are somewhat higher compared to

cohesion weighting, this difference does not show up in the respective equations’

explanatory powers.

To sum up, as already signalled by the simulation analyses with regards the

distance and structural weighting schemes, empirical findings reinforce that the

ENQ index is able to robustly capture the position of a node in the network and the

specific choice of distance and local neighbourhoods structure weighting are of

secondary importance.

5.6 Summary

In this paper we introduced the Ego Network Quality (ENQ) index, which intends

to capture the value of knowledge available from a node’s immediate and indirect

neighbourhood in a given network. The index integrates three aspects of the

network position into one comprehensive measure. First, it is based around the

concept of Knowledge Potential which sums the value of knowledge available at

the neighbours. Second, this Knowledge Potential is weighted by the structure of

the neighbourhood on the basis of the assumption that in addition to the individual

knowledge level of partners, the structure of how they are related to each other also

contributes to the value of knowledge available from one’s network. Third, not only

direct neighbourhoods are taken into account, but also indirect partners with their

knowledge levels and structural characteristics.

Research on the impact of networks on knowledge production either concen-

trates on the characteristics of networks (“a-spatial studies”) or on the characteris-

tics of connected nodes (i.e., knowledge level in “spatial studies”) but neither on

Table 5.1 Main regression

results with different distance

and structural weighting

schemes

Structural weights

Cohesion Mixed

Distance weights Linear 0.2737** 0.0755

(0.7534) (0.7482)

Hyperbolic 0.2570*** 0.3366***

(0.7599) (0.7571)

Exponential 0.2418*** 0.3687***

(0.7609) (0.7607)

Note: Asterisks refer to significance levels (*10 %; **5 %;
***1 %). R-squared values of the corresponding regressions are

in parentheses
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both features. It is shown in this chapter that ENQ is an integrated measure of

network position and node characteristics.

ENQ splits the network around a given node into consecutive neighbourhoods

depending on the distance of other nodes from the node in question, then it weights

the knowledge levels (Knowledge Potential) in each neighbourhood with the

structure and the distance of the neighbourhood. This chapter focuses on the

specific way these weightings are executed. In the case of distance, three possible

decay functions (linear, hyperbolic and exponential) were analysed while following

the literature on network position and social capital we proposed two distinct ways

for structural weighting, namely one which attaches high weights for dense local

structures (Local Connectivity) and one which weights structural holes (Connected

Components). Led by intuition, we also proposed a weighting scheme combining

these features.

Using simulation exercises we demonstrated that the ENQ is able to reflect the

structural patterns of networks, without leading to significant bias resulting from the

choice of the different weighting methods, especially on a specific interval of

network structure which can be remarked as empirically relevant based on some

stylized facts of empirical co-patenting networks. It is also demonstrated that the

ENQ index can flexibly accommodate different definitions of structural weights,

but under the same relevant structural interval of network topologies, this choice is

of secondary importance. Empirical findings further reinforce that ENQ is able to

robustly capture the position of a node in the network and the specific choice of

distance and local neighbourhoods structure weighting are of secondary

importance.

However, we must be aware of the limitations of the ENQ index and of this

study. First, although we employed a network model which spans a range of

different network structures, the analysis is still limited to the structures included

in this model, namely from random to centralized topologies. As mentioned before,

empirical networks can exhibit more refined characteristics than reproduced by

simple models – for example hierarchy, multiple cores, etc. Second, our analysis is

restricted to the global behaviour of the ENQ index under different structures and

weighting schemes. How the node level characteristics behave under these settings

was not tackled in the present paper.

We believe that the proposed measure of the ENQ index, although developed

and applied for a specific type of network, namely interregional knowledge net-

works, is able to bear general acceptance across different fields through its flexi-

bility. The general innovation is that not only the structural characteristics are

captured at the local and global levels through accounting for direct and indirect

neighbourhoods, but ENQ also accommodates and accounts for individual charac-

teristics of the nodes in these neighbourhoods. Although in this study we labelled

these characteristics as knowledge levels (Knowledge Potential), in a general sense

any node-specific feature can be substituted here. In addition, the weighting factor

for the structural features is also flexible to accommodate any structural property

the researcher wishes to emphasize.
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Appendix

The Modified Preferential Attachment Model

The model is developed in order to provide a transition from random graphs of the

Erdős-Rényi type through scale-free structures to highly centralized networks. The

model starts from a network of M nodes connected randomly with average degree

D. Then we increase the size of the network step by step from M to N, adding one

new node to the network at a time. In each step the new node establishes exactly

D links with the existing ones, on the basis of a probabilistic parameter, r. With

probability r the new link is attached to the node with the highest degree in the

network and with probability 1 � r the new link is attached randomly to any

existing node. It is easy to see that using this method we have two parameters,

namely M and r, which contribute to the scalefree characteristics of the underlying

network. If r increases with a given M, the network moves towards a more

centralized structure and vice versa. However, if r is zero, we still do not have a

random network for an arbitrary M as the growth of the network in the algorithm

still contributes to an underlying asymmetric degree distribution (older nodes tend

to have more links than younger ones).

On the other hand, modifying M and r jointly, we can set up a one-dimensional

interval from 0 to 1 which moves from random graphs to centralized graphs through

scalefree networks. At one end of this scale we have M ¼ N and r ¼ 0, which is a

random graph by definition. Then we gradually increase r and at the same time

decrease M. As a result, the network structure resulting from the previously

described algorithm departs from being random and becomes more centralized.

At the other end of the scale we reach the most centralized structure with r ¼ 1 and

M ¼ 1. Note however, two things. First, we can express this process with one

parameter, say z, ranging from 0 to 1. Then we have r ¼ z and M ¼ z + (1 � z)N
as inputs to our model and the value of z expresses the position between random and

centralized graphs. Second, the extreme case of z ¼ 1 is not necessarily the star

network as if the degree is higher than one, there is a connected core in the network,

but it is true that the size of this core is D and all other nodes are linked only to

this core.

The model thus has analogous logic to the Watts-Strogatz model (Watts and

Strogatz 1998), with random and star-like topologies on the extremes and scalefree

structures in between.

94 T. Sebestyén and A. Varga



Trade-Off Between Density and Connected Components

We executed a simple simulation on a random network and on a scalefree one (with

the Erdős-Rényi and the Barabási algorithms respectively). The networks in these

simulations are sparse networks with global density of 3 %. The sparsity is required

from a presentational point of view as the higher the overall density, the more

neighborhoods are connected and there is less possibility to find unconnected

groups in the neighborhoods.

For both networks we calculated the density and the number of connected

components in the direct neighbourhoods of every node (taking these

neighbourhoods as subgraphs and calculating density and the connected compo-

nents on these subgraphs). Figure 5.5 plots the calculated density values and

connected components for each node. As connected components must be an

integer, the data points are arranged in horizontal lines. The figure clearly shows

that there is indeed a trade-off between the two values and this trade-off is stronger

in the random network. In the scalefree case we rather observe a missing upper

triangle in the diagram, which shows that there are no nodes with dense

neighbourhoods and many unconnected groups in their neighbourhood, whereas

the other three combinations are present. In addition to dense neighbourhoods with

few groups and sparse neighbourhoods with many groups, there are nodes the

neighbourhoods of which are sparse and characterized by a small number of

unconnected groups, which are not present in the random network. The difference

between the two network structures stems from the different degree distributions.

Fig. 5.5 Trade-off between structural holes and density in random and scalefree networks
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Chapter 6

Network Autocorrelation and Spatial

Filtering

Yongwan Chun

Abstract Geographical flows have been frequently modeled with gravity type

spatial interaction models. The estimation of spatial interaction models is often

achieved with regression techniques, including linear regression and Poisson/neg-

ative binomial regression based on the nature of the observations under the inde-

pendence assumption among observations. Recent studies show, with a

development of neighborhood structure among network flows, that geographical

flows such as population migration tend to have a significant level of correlation.

This phenomenon, called network autocorrelation, leads to a violation of the

independence assumption and raises a necessity of a proper modeling method which

can account for network autocorrelation. The eigenvector spatial filtering method

furnishes a way to incorporate network autocorrelation in linear regression and

generalized linear regression. Specifically, the eigenvector spatial filtering method

can be utilized to describe positive autocorrelation in Poisson/negative binomial

regression, whereas their counterpart auto models are able to describe only negative

autocorrelation due to the integrability condition. This chapter discusses different

specifications of eigenvector spatial filtering to model network autocorrelation in a

spatial interaction modeling framework. These methods are illustrated with applica-

tions with interregional commodity flows and interstate migration flows in the U.S.

6.1 Introduction

Interest in the geography of R&D networks has substantially increased over the last

two decades, and leads to theoretical and methodological advances in the literature

(see Chap. 1 of this volume). Spatial interaction models, which are often used in

modeling cross-region R&D collaboration activities, have been improved along
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with these methodological advances. Since R&D networks can be considered as

geographical flows, spatial interaction models can furnish an analytic method for

the geography of R&D networks (see Barber and Scherngell 2013). Recent devel-

oped methods show that such geographical flow models can be remarkably

improved by taking network autocorrelation into account in their model

specifications.

Geographic flows can be referred to as movement of people, goods, or services

on the earth surface. Statistical modeling for geographic flows has been commonly

conducted in a spatial interaction modeling framework. In a gravity type spatial

interaction model, the amounts of geographical flows are explained with three

different types of variables, which tend to capture the characteristics of origins,

destinations, and impedance between a dyad of an origin and a destination, respec-

tively. Linear regression is frequently utilized in model estimation (e.g., Celik and

Guldmann 2007; Greenwood 1985), and Poisson regression is also commonly

applied to count type flow data such as population migration (Flowerdew and

Aitkin 1982).

Spatial interaction models are further improved by taking the effects of spatial

structure into consideration. Curry (1972), Griffith and Jones (1980), and

Fotheringham (1981) discuss that parameter estimates of spatial interaction models

may be unreliable or biased when the effects of spatial structure are not incorpo-

rated. Specifically, an estimate of global distance decay is likely to be biased due to

its model misspecification in which localized spatial structure effects cannot be

distinguished from the global distance decay effect. For example, when multiple

destinations are closely located with each other, competition among the destina-

tions may occur and accordingly each of them may have less inflow than ones

without competition. That is, localized spatial arrangement affects decisions on a

geographic space. One methodological improvement is achieved by introducing a

variable capturing spatial structure effects in its model specification, which often

has a form of accessibility measure (e.g., Kwan 1998) This approach includes

competing destination models (Fotheringham 1983) and intervening opportunity

models (Stouffer 1960), which capture spatial structure effects among origins and

destinations, respectively. Studies show that spatial interaction models can further

be improved by introducing these two effects simultaneously (e.g., Chun

et al. 2012).

Recent research has developed model specifications to explicitly incorporate

dependence structure among observations in spatial interaction models (Chun

2008). These model specifications include stochastic terms that are applicable to

capture a dependence structure embedded in geographic flows. The dependence

structure among flows is referred to as network autocorrelation (Black 1992).

Studies (e.g., Chun 2008; Griffith 2009; Fischer and LeSage 2010; LeSage and

Pace 2008) show that incorporation of network autocorrelation remarkably

improves spatial interaction models. While these extended spatial interaction

models can be specified in the spatial autoregressive model framework (Chun

et al. 2012; LeSage and Pace 2008), the eigenvector spatial filtering method

furnishes a flexible way to account for network autocorrelation in linear and
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Poisson regression model specifications (Chun 2008; Griffith and Chun 2013;

Fischer and Griffith 2008; Patuelli et al. 2011).

This chapter discusses how spatial interaction models can be improved by

accounting for network autocorrelation. Specifically, it shows how eigenvector

spatial filtering can be extended to accommodate network autocorrelation. The

rest of this chapter is organized as follows. Section 6.2 presents how network

neighborhood structure can be specified. Section 6.3 describes the eigenvector

spatial filtering method to incorporate network autocorrelation in spatial interaction

models. Section 6.4 illustrates the proposed method with two empirical data

analyses. The final section presents conclusions and discussion.

6.2 Network Dependence Structure

Network autocorrelation can be defined as correlation among values in one variable

which is attached to network flows. In an example of interregional migration flows,

a network link is defined as a direct connection between an origin and a destination

(which are considered as nodes), and the number of migrants from the origin and to

the destination can be an attached variable. Investigations concern how observa-

tions attached to network flows are associated in a given network structure (i.e.,

similar or dissimilar tendency). This requires an operational framework to define

network neighbors as spatial neighbors are used for a spatial autocorrelation

measure such as Moran’s I. That is, Moran’s I can be utilized to measure network

autocorrelation with a defined network neighbor structure. This can be imple-

mented with a matrix, which is called network weights matrix here. Each element

of a network weights matrix contains a non-zero value for network neighbors and

zero otherwise. Generally, a network weights matrix has a larger dimension than a

spatial weights matrix. For example, while a spatial weights matrix has n-by-n

dimension for n regions in a study area, a network weights matrix can have n2-by-n2

dimension for n2 flows among the n regions.

It is important to determine a structure in which the values of network flows are

considered to be associated with each other. Chun and Griffith (2011) show that a

network weights matrix can be generated from a spatial weights matrix as follows:

BN ¼ I
O

B ð6:1Þ
BN ¼ B

O
I ð6:2Þ

BN ¼ B
M

B ¼ B
O

Iþ I
O

B ð6:3Þ
BN ¼ B

O
B ð6:4Þ

where BN is an n2-by-n2 binary network weights matrix, B is an n-by-n binary

spatial weight matrix (e.g., 1 when spatial units share a boundary; otherwise 0), I is
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an identify matrix with n-by-n dimension,
N

denotes Kronecker product, and
L

denotes Kronecker sum. An extended network weight matrix can be generated with

matrix addition between Eqs. 6.3 and 6.4 as:

BN ¼ B
M

Bþ B
O

B: ð6:5Þ

In Eq. 6.1, network flows whose origins are same and whose destinations are

spatially neighbors are considered as network neighbors to each other. In Eq. 6.2,

network flows with same destinations and spatially neighbored origins are consid-

ered as network neighbors. These two network weights matrices reflect the effects

of spatial structure around destinations and origins, respectively. Chun (2008)

discusses competing destination models and intervening opportunity models as

the rationales for these two types of network weights matrix in the context of

population migration. The third type network weight matrix can be constructed

with the sum of the two network weights matrices in Eqs. 6.1 and 6.2, reflecting the

spatial structure effects around both destinations and origins. In the network weight

matrix in Eq. 6.4, a network flow is associated to other network flows from its

origin’s spatial neighbors to its destination’s spatial neighbors.

The last type of network weights matrix in Eq. 6.5 can be generated by adding

the network weights matrices in Eqs. 6.3 and 6.4. In this network weights matrix,

network flow is associated to all network flows that possibly occur between

spatially neighboring origins and spatially neighboring destinations including its

origin and destination. Figure 6.1 illustrates network dependence structures with

Eqs. 6.3 and 6.4. The solid line network flow is associated to the 12 dotted line

network flows in Fig. 6.1a and 36 dotted line network flows in Fig. 6.1b. In a

network weight matrix with Eq. 6.5, these 48 network flows are considered to be

associated with the solid line (Fig. 6.1a, b). A network weights matrix based on

Eqs. 6.3 or 6.4 has been frequently used in studies (e.g., Chun 2008; Griffith 2009;

Fischer and Griffith 2008; Mitze 2012). However, a network weights matrix based

on Eq. 6.5 has not yet been used. This weights matrix, in which all network flows

between spatially neighboring origins and destinations are considered, may allow

one to reflect a comprehensive network dependence structure.

6.3 Spatial Filtering in Spatial Interaction Models

Spatial interaction models have been one of most commonly used methods to

model interregional flows. A simple gravity type spatial interaction model can be

expressed as:

Fij ¼ k � Pβoi � PβDj � exp βd � dij
� �

, i, j ¼ 1, . . . , n ð6:6Þ

where Fij is flow from i to j, Pi and Pj are population at i and j, respectively, and dij is
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the distance between i and j. The parameters (k,βO,βD,βd) are often estimated with

linear regression after taking natural logarithm on both sides of the equation, or

generalized linear regression (e.g., Poisson regression). An augmented spatial

interaction model contains additional independent variables which reflect the char-

acteristics of origins, destination, and/or flows. In linear regression an augmented

spatial interaction model with a log-linear specification can be rewritten in matrix

form as:

ln Fð Þ ¼ ln Xð Þβþ ξ, ð6:7Þ

where X is a design matrix and ξ is the vector of residuals. Spatial interaction

models can be extended to accommodate network autocorrelation. The residuals, ξ,
often have a significant level of network autocorrelation in an empirical network

flow dataset. While spatial autoregressive (SAR) model approach provides a way to

incorporate network autocorrelation in its specification (e.g., Chun et al. 2012;

Fischer and LeSage 2010), eigenvector spatial filtering technique furnishes an

alternative method. The eigenvector spatial filtering (ESF) utilizes eigenvectors

extracted from a transformed spatial weight matrix, (I � 11T/n)B(I � 11T/n)

where I is an identity matrix with n-by-n dimension, 1 is an n-by-1 vector of

ones, and B is a spatial weights matrix. The eigenvectors are uncorrelated and

orthogonal. Hence, the eigenvectors represent distinct map patterns when they

are portrayed on the tessellation from which a spatial weight matrix is generated

(see Griffith 2003 for details). In regression the ESF method includes a set of

eigenvectors as independent variables to capture unexplained spatial autocorrelation

Fig. 6.1 Network dependence structures: (a) network flows from spatial neighbors of an origin to

a same destination or network flows from a same origin to spatial neighbors of a destination, and

(b) network flows from spatiallly neighboring origins to spatially neighboring destinations
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which violates the independence assumption. Therefore, an ESF model does not

suffer from spatial autocorrelation that often leads to biased parameter estimates in

regression. In order to account for network autocorrelation in a spatial interaction

model, eigenvectors can be generated from MBNM where M ¼ In2 � 1n21
T
n2=n

2
� �

,

In2 is an identity matrix n2-by-n2 dimension, and1n2 is an n
2-by-1 vector of ones. That

is,M is a modified matrix to match the dimension of BN. Hence, these eigenvectors,

E ¼ (E1,E2, � � �,En), in descending order of their corresponding eigenvalues denoted

as λ ¼ (λ1,λ2, � � �,λn), can be utilized to capture network autocorrelation among

network flows. An ESF model specification of a spatial interaction model can be

expressed as:

ln Fð Þ ¼ ln Xð Þβþ Ekβk þ ε, ð6:8Þ

where Ek denotes k selected eigenvectors, βk are corresponding coefficients, and ε
is random errors. Since Ek capture network autocorrelation, the residuals do not

have a significant level of network autocorrelation and, hence, the parameter

estimates become unbiased (Griffith and Chun 2013). An identification of a feasible

set of eigenvectors can be conducted with the conventional stepwise regression

technique from a candidate set of eigenvectors. Generally, a candidate set of

eigenvectors is constructed by dropping eigenvectors which do not account for a

substantial level of network autocorrelation. Alternatively, eigenvectors can be

selected with minimizing network autocorrelation until network autocorrelation

in residuals are close to its expected value or its z-score is close to zero (Tiefelsdorf

and Griffith 2007).

6.4 Applications

In this section, two empirical interregional flow datasets are analyzed in a spatial

interaction model framework. In the first application, interregional commodity

flows in the U.S. (measured in million dollars) are analyzed in linear regression

framework. In the second application, interstate migration flows in the U.S. are

modeled with Poisson and negative binomial regression.

6.4.1 Interregional Commodity Flows in the U.S.

A dataset for interregional commodity flows in the U.S. were obtained from the

2002 Freight Analysis Framework (FAF)1 which provides estimates of inter-

regional freight movements in the U.S. by integrating mainly Commodity Flow

1 http://www.ops.fhwa.dot.gov/freight/freight_analysis/faf/
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Survey and other resources. In this research, origin–destination (OD) flows among

111 FAF regions which reside in the conterminous U.S. are analyzed. Hence, the

total number of flows is 12,321. Figure 6.2 displays dominant interregional com-

modity flows that are more than five billion dollars with line symbols. The point

symbols in the figure represent internal commodity flows within individual FAF

zones. The points are located at population weighted centers calculated with county

level population from the 2000 U.S. Census.

Following the classical spatial equilibrium model (Enke 1951; Samuelson 1952;

Bröcker 1989), a spatial interaction model for the interregional commodity flows is

specified with nine independent variables in linear regression, similarly to Chun

et al. (2012). Four variables reflect the characteristics of origins, including income

per capita (o_inc), average plant size (o_plant), average production value (o_prod),

and the number of employed people (o_emp). The three variables associated with

destinations are population (d_pop), manufacturing (d_manuf), and income per

capita (d_inc). The interregional distances (dist) are calculated with spherical

distances between the population weighted centers. Finally, a dummy variable

(intra) is included to capture the effects of large internal flows. These independent

variables are transformed with natural logarithm except the intra dummy variable.

Although natural logarithm is also commonly applied to a dependent variable,

Box-Cox transformation is applied to make the transformed variable close to a

normal distribution (e.g., Celik and Guldmann 2007).

Network autocorrelation of the transformed variable is measured with the five

network weights matrix types defined in Eqs. 6.1, 6.2, 6.3, 6.4, and 6.5. As you can

see in Table 6.1, the dependent variable has an extremely high level of network

Fig. 6.2 The dominant interregional commodity flows among the 111 FAF zones in the U.S.
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autocorrelation regardless of network weights matrix type. However, it has the

highest z-score of Moran’s I value (195.2715) with the network weights matrix in

Eq. 6.5. Also network autocorrelation is measured with the residuals of the base

linear regression model with the nine independent variables. As expected, the level

of network autocorrelation decreases noticeably, but still a significant level of

network autocorrelation remains among the residuals. The highest level of network

autocorrelation is observed with the network weights matrix in Eq. 6.5. Hence, the

network weight matrix in Eq. 6.5 is utilized in this research including ESF.

Table 6.2 shows the results of the base and the ESF models. The ESF model is

estimated with 212 selected eigenvectors. There are three noticeable differences.

First, eigenvector spatial filtering successfully accounts for network autocorrela-

tion. While the residuals of the base model have a significant level of network

autocorrelation (z-score of Moran’s I ¼ 116.4794), the ESF model does not have a

significant level of network autocorrelation (z-score of Moran’s I ¼ �0.1184).

Second, the ESF model has a better model fit. Its adjusted R2 value (0.7612) is

larger than that of the base model (0.6458). Also the ESF model has a smaller AIC

value than the base model. The likelihood ratio test statistically supports that the

ESF model has a better model fit (the test statistics is 5,061.98 with 202 degrees of

freedom). Third, statistical significance changed for three independent variables by

accounting for network autocorrelation. The origin income variable is not signifi-

cant at the 5 % level in the base model but becomes significant in the ESF model. In

contrast, two variables, plant size in origin and average production value, are

significant at the 5 % level in the base model, but become insignificant in the

ESF model. Unlike these differences, the estimates for the other variables are not

significantly different from each other, and the estimates are significant with the

expected negative sign in both models coefficients.

6.4.2 Interstate Migration Flows in the U.S.

The American Community Survey (ACS) has published state-to-state migration

flows among the U.S. states. Here, the 2005–2009 ACS migration flows among the

48 states and Washington D.C. in the continental U.S. are analyzed, excluding

Alaska and Hawaii due to their remote locations . Also, with a focus on interstate

migration, internal migration flows within one state are excluded. This gives total

2,352 (¼ 492 � 49) interstate flows. Figure 6.3 shows dominant migration flows

with more than 20,000 migrants, which are about top 3 % largest interstate

migration flows in the 5-year period. Some noticeable large migration flows with

more than 50,000 migrants are from California to Texas, from New Year to Florida,

from California to Arizona, from Florida to Georgia, from Louisiana to Texas, from

New York to New Jersey, and from California to Nevada. The large migration from

Louisiana to Texas in this period may be explained by the effects of hurricane

Katrina.
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The interstate migration flows are modeled with Poisson and negative binomial

(NB) regression in a spatial interaction framework. As the numbers of migrants are

count, Poisson and NB models can provide a more appropriate modeling approach

(e.g., Flowerdew and Aitkin 1982; Abel 2010). Also, these models are estimated

Table 6.2 The results of the base and eigenvector spatial filtering linear regression models

Base model Spatial filter model

Coefficient Std. error Coefficient Std. error

Intercept �29.4192 1.3004*** �37.3490 1.2496***

o_inc 0.1501 0.1187 0.4789 0.1136***

o_plant �0.1714 0.0866* 0.0667 0.0868

o_prod 0.0694 0.0162*** 0.0260 0.0155

o_emp 1.3445 0.0180*** 1.3988 0.0164***

d_pop 0.3542 0.0306*** 0.3702 0.0284***

d_manuf 0.9252 0.0253*** 0.9906 0.0240***

d_inc �0.0326 0.0762 0.2641 0.0745***

dist �0.0014 0.0000*** �0.0013 0.0000***

Intra 5.1917 0.1295*** 2.7393 0.1174***

z-score of Moran’s I (p value) 116.4794 (0.0000) �0.1184 (0.5471)

R2 (Adjusted R2) 0.6461 (0.6458) 0.7653 (0.7612)

AIC 42,222.79 37,564.8

Log likelihood �21,100.39 (df ¼ 11) �18,569.4 (df ¼ 213)

# of selected eigenvectors – 202

Fig. 6.3 The dominant interstate migration flows with more than 20,000 migrants during

2004–2009
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with the ESF method. In the models, seven independent variables are included,

which were obtained also from the 5-year ACS in 2009. Following an extended

gravity model of migration (e.g., Greenwood 1985; Hunt and Mueller 2004), three

origin variables are total population (o_pop), unemployment rates (o_unemp), and

income per capita (o_inc). The same three variables are included for destinations

(i.e., d_pop, d_unemp, and d_inc). The distance-decay (dist) is model spherical

distances between on weighted centers based on county populations using power

function instead of exponential function in Eq. 6.6.

Table 6.3 reports the results of the Poisson and NB models. When the results of

the base and the ESF Poisson models are compared, the ESF Poisson model has a

significantly improved model fit with a smaller AIC and a large log-likelihood value

than the base Poisson model. The log-likelihood ratio test confirms the increase of

the model fit (the test statistics is 2,337,349.4 with 145 degrees of freedom). The

dispersion parameter decreases to 530.38 in the ESF Poisson model from 1,819.62

of its counterpart base model. This considerable decrease of a scale parameter

estimate has been constantly observed in empirical flow data modeling (e.g., Chun

2008; Fischer and Griffith 2008), although this still shows a high level of

overdispersion. This might suggest a NB model specification to account for the

overdispersion (e.g., Congdon 1989).

The estimation results of NB models show a similar pattern as the Poisson

models when the base and ESF models are compared. The ESF NB model has a

better model fit with a smaller AIC value and a larger log-likelihood value. The

log-likelihood ratio test (its test statistics is 2,041.54 with 82 degrees of freedom)

confirms the improvement of model fit. Figure 6.4 shows scatterplots of observed

versus estimated values of the NB models. It shows that the estimated values of the

EFS NB model are closer to the observed values than those of the base NB model.

The ESF NB model has a larger estimate for θ parameter than the base NB model.

As the variance of negative binomial given its mean (μ) is μ + μ/θ, the result of the
ESF NB model shows a less variability with a smaller estimate for dispersion

(0.2870) than the base NB model (0.6407).

Statistical inferences for independent variables change by accounting for net-

work autocorrelation in the Poisson and NB models. In the Poisson models, the

statistical inference for o_unemp and o_inc variables changed at the 5 % level. In

the base NB model, o_unemp and d_ unemp variables are significant at the 5 %

level but become insignificant in the ESF NB model at the same level. With regards

to the distance-decay effect, the ESF Poisson model produces a higher level of

distance-decay effect than the base Poisson model. However, the estimated

distance-decay effect of the ESF NB model is not statistically different from that

of the base NB model.
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6.5 Conclusions

This research investigated network autocorrelation with the two empirical

interregional flows in the U.S.: interregional commodity flows and interstate migra-

tion flows. These flow datasets were analyzed using the ESF technique in a spatial

interaction modeling framework. The level of network autocorrelation in the

interregional commodity flows is measured with five different types of network

weights matrices. Although highly significant positive network autocorrelation was

measured with all types of network weights matrices, the highest level of network

autocorrelation was observed with one defined in Eq. 6.5. Since, in this network

weights matrix, all network flows between spatially neighboring origins and desti-

nations are considered as a neighbor, a more comprehensive network dependence

structure is reflected. Although an advanced model specification allows more than

one weights matrices simultaneously (e.g., LeSage and Pace 2008), many currently

available functions allow only one weights matrix for spatial models. Hence, it is

beneficial to reflect an appropriate network dependency structure in a weights

matrix, and the empirical results show that the network weights matrix in Eq. 6.5

is possibly a good specification.

The two empirical analyses demonstrate that the ESF method successfully

accounts for network autocorrelation and, consequently, leads to a better model

fit in both linear and generalized linear (i.e., Poisson and NB) regression models.

The ESF linear regression model does not have a significant level of network

autocorrelation, while the base linear regression model suffers from an extremely

high level of network autocorrelation in its residuals. One interesting point of the

Poisson and NB regression results is that an estimate for extra variability decreases

by accounting for network autocorrelation. This finding concurs with the fact that a
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Fig. 6.4 The scatterplots of observed vs. estimated values of the base NBmodel (left) and the ESF
NB model (right)
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variance increases in a data distribution when a significant level of spatial autocor-

relation is present in a random variable (Griffith 2011).

Gravity type spatial interaction models have been commonly utilized in quanti-

tative geographical flow modeling. These models are often estimated without

considering network autocorrelation, although the effects of spatial structure or

spatial autocorrelation in spatial interaction have been recognized in the literature.

Recent development in modeling network autocorrelation improves spatial inter-

action modeling for network flows. Especially, the ESF method, with its flexible

specification, furnishes a useful method to modeling network autocorrelation in

linear and generalized linear models.
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Chapter 7

Assortativity and Hierarchy in Localized

R&D Collaboration Networks

Joan Crespo, Raphaël Suire, and Jérôme Vicente

Abstract One of the challenges of innovative clusters relies on their ability to

overlap technological domains in order to maintain their growth path along the

cycle of technological markets. The paper studies two particular structural proper-

ties of collaboration networks that provide new insights for understanding this

overlapping process. On the one hand, the degree distribution of knowledge net-

works captures the level of hierarchy within networks. It gives a first measure of the

ability of networked organisations to coordinate their actions. On the other hand,

the degree correlation captures the level of assortativity of networks. It gives a

measure of the ability of knowledge to flow between highly and poorly connected

organisations. We propose to combine these simple statistical measures of network

structuring in order to study the parameters window that allow localized knowledge

networks combining technological lock-in with regional lock-out.

7.1 Introduction

The study of R&D collaboration networks has become a subject of a growing interest

in spatial analysis and geography of innovation (Autant-Bernard et al. 2007;

Scherngell and Barber 2011). In particular, clusters analysis have found through the

identification of localized R&D collaboration networks new means for assessing

regional performances (Owen-Smith and Powell 2004; Vicente et al. 2011;
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Balland et al. 2013), beyond the simple co-location of innovative activities or the

black box of local knowledge spillovers (Breschi and Lissoni 2001).

Our contribution fits with this research challenge, with a particular focus on the

ability of localized R&D collaboration networks to maintain a long term perfor-

mance in a context of rapid business and technological cycles. The aim is to capture

the structural properties of collaboration networks that allow clusters performing in

particular technologies without compromising their renewal capabilities when

markets for these technologies decline. As a matter of fact, some clusters can

have difficulties in coping with technological and market decline, even if they

were leading places during the maturity stage of the industry. At the opposite some

others can succeed in disconnecting their cycle to the cycle of technologies by

reorganizing resources and networks towards a new stage of growth based on a new

or related growing market. Literature provides some highlighting stylized facts of

such patterns of cluster evolution. For instance, Saxenian (1990) describes the

renewal of the Silicon Valley in the 1980s from the declining semiconductor

industry towards the emerging computer industry. She stresses on the fact that

such a renewal was more the consequence of a reorganisation of knowledge flows

into the local organisational network rather than the consequence of market or

national policy concerns. Tödling and Trippl (2004) converge towards the same

conclusions in their study of the differentiated renewal capabilities of clusters in a

sample of old industrial areas; while Cho and Hassink (2009) find evidences

according to which some clusters reach their maturity through an increasing rigidity

of their networks that plays against their ability to react to market cycles.

Then clusters life cycles (Suire and Vicente 2009, 2013; Menzel and Fornahl 2010;

Crespo 2011; Boschma and Fornahl 2012) can find explanations in the structural

organisation of collaboration networks and their evolving patterns along the cycle of

technologies and markets. Do successful clusters in a mature industry necessarily

locked into a rigid trajectory and then to decline, or are there particular structural

properties of localized collaboration networks that enable clusters to combine perfor-

mance in mature industries and renewal capabilities towards emerging ones?

In order to disentangle this question, we propose in a second section to discuss

the micro-motives of organisations for joining a network and building knowledge

relations, and the resulting consequences on the emerging structural properties of

knowledge networks. This section will show that network hierarchy and

assortativity appear as two salient topological and structural properties that play

together in the long term performance of localized R&D collaboration networks.

Section three proposes to associate these structural properties to two statistical

signatures of collaboration networks that provide tools for developing new evi-

dences on the critical factors of the long term dynamics of clusters.
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7.2 Clusters as R&D Collaboration Networks

7.2.1 Clusters Growth and Structuring

A cluster can now be defined as a local relational structure that results from the

identification of a set of nodes of various institutional forms (the organisational

demography) and the ties between them (the relational structure). Inter-

organisational ties in a cluster can be of different nature (productive, commercial,

cognitive or social) and of different geographical length. Our discussion focuses on

localized R&D collaboration networks, and then organisational relations locally

constructed to exchange knowledge in high-tech technological domains.

Network theory is very useful for analysing cluster properties, since it has

identified several drivers of network formation (Ahuja et al. 2012) that can be

founded on micro-economic behaviours. In particular, these micro-foundations are

necessary to understand how new entrants join a cluster, and (re)shape its relational

structure.

Firstly, networks can evolve through the entry of new nodes that do not connect

to any other node (isolates), or through the entry of new nodes that connect to others

by purely random attachment mechanism. It means that entering nodes connect to

others with no particular preference for their position in the structure. Isolate

entrants and random attachment mechanism will give rise to a rather flat hierarchy

of degrees in the collaboration network. In terms individual strategies, both kinds of

processes can be associated with a locational cascade (Suire and Vicente 2009). In

locational cascades, new entrants draw pay-offs from belonging to the structure as a

whole, not from targeted connections to particular nodes in the structure. Locational

cascades have been largely evidenced for clusters that attract new organisations

because of an external audience and a geographical charisma (Romanelli and

Khessina 2005; Appold 2005). Organisations converge to a “locational norm”

since the charisma displayed by one place in terms of R&D productivity provides

a signal of quality and a strong incentive for being located there, whatever the

position in the relational structure.

Secondly, entries can occur through a process of preferential attachment. In this

opposite case, nodes with many ties at a given moment of time have a higher

probability to receive new ties from new entering nodes. The higher the degree of

an organisation in the collaboration network, the more this organisation is attractive

for receiving new ties, so that the network grows through an increasing hierarchy

(Albert and Barabási 2002). This behavioural pattern of nodes can be associated to a

network effect in location decision externalities. This means that the more new

entrants are connected to highly connected nodes, the more their payoffs increase,

due to the benefits of reciprocal knowledge accessibility and technological connec-

tions to an emerging and growing standard. This branching process is now linked to

targeted connections in the structure rather than random ones, and is consistent with

the relational constraints that typify the production and diffusion of technological

standards in high-tech industries and markets (Farell and Saloner 1985; Arthur
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1989). It is also consistent with the relational behaviour of spinoffs that tend to

connect to their often highly connected parent’s company (Klepper 2010).

Beyond node entry, clusters structure themselves through the construction and

dissolution of ties. The literature acknowledges two categories of individual incen-

tives that shape social structures, and dissociate closure from bridging network

strategies (Baum et al. 2012). Triadic closure implies that a node with links to two

other nodes increases the probability for these two nodes to have a tie between

them. Such an argument is grounded on the process of trust construction that grows

between two related nodes, because it fosters cooperation and knowledge integra-

tion within groups of nodes. Closure in collaboration networks strengthens the

mutual monitoring capability of organisations. Indeed, on one hand, it decreases

the possibilities of opportunistic behaviours (Coleman 1988). On the other hand, it

increases the effects of conformity required by technological standardization pro-

cesses: without such closure, organisations can be tempted to play the battle of

standards and accept the risk of a payoff decrease. As this process develops, the

clustering coefficient of the network increases, and triadic closure tends to shape a

core-component in the collaboration network (Borgatti and Everett 1999), in

particular when closure prevails for highly connected organisations. The second

category of individual incentives relates to bridging strategies and introduces the

idea of a more disruptive relational behaviour. For a given network, bridging ties

will be shaped when one organisation finds an opportunity to connect disconnected

organisations or groups of organisations. Such an agency behaviour (Burt 2005) is

more entrepreneurial than the former, since bridging provides access to new and

non-redundant knowledge and new opportunities for improving innovation capa-

bilities (Ahuja et al. 2009).

7.2.2 Structural Properties of R&D Collaboration Networks

According to the mechanisms of network formation and structuring at work in

clusters, they will display a high degree of variability in the structural and topo-

logical properties of their collaboration network. Previously captured using differ-

ent methodological approaches (Markusen 1996; Iammarino and McCaan 2006),

this variety of cluster relational structures can be assessed using network theory

through a set of simple key-indexes that echo important features of collaborative

process of innovation.

The first property relies on the degree of connectedness of the collaborative

network. A cluster will be fully connected if there is no isolates in the population of

nodes and all the nodes can be reached by the other nodes. The second one is the

density of the collaborative network. Clusters can have a very weak level of

relational density if organisations value isolated strategies over knowledge partner-

ships. In that case, the clusters are no more than the simple result of a co-location

process, as for the well-known satellite platform of Markusen (1993). On the

contrary, clusters can display a high level of density when knowledge
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complementarities, trust and social proximity (Boschma 2005) lead to high levels of

local cohesiveness into the collaboration network.

More importantly, even for a full connectedness and a fixed level of density,

other structural properties matter and provides relevant information on the collab-

oration process. Considering the degree centrality of each organisation, i.e. direct

interaction neighbourhood, the distribution of degree can vary from a flat distribu-

tion to an asymmetric one. To put it differently, the shape of the degree distribution

refers to the hierarchy of positions in the web of relationships, and can be captured

by ranking organisations in a network according to their degree and putting into

relation with their own actual degree. Some organisations can have many relations

due to a high relational capacity (König et al. 2010). This is generally linked to the

size of the organisations, their absorptive capacities or the openness of their model

of knowledge valuation. On the contrary, some others remain poorly connected due

to their newness, their small size or their closed model of knowledge valuation.

Moreover, considering again the degree of each organisation, clusters can vary

in their structure according the shape of the degree correlation. Indeed, clusters can

display various levels of structural homophily, which is generally captured by an

index of assortativity (Newman 2003; Watts 2004; Rivera et al. 2010). Here again,

the assortativity of a network can be captured by the relation between the degree of

each organisation and the mean degree of the organisations in its direct

neighbourhood. The structure of relationships will be assortative when highly

(poorly) connected nodes tend to be connected disproportionately to other high

(weak) degree nodes. In that case, the degree correlation of the network is positive.

At the opposite, the structure of relationships will be disassortative when highly

(poorly) connected nodes tend to be connected disproportionately to other weak

(high) degree nodes. In that case, the degree correlation of the network will be

negative. Therefore, the level of network assortativity gives a formal representation

of the way knowledge flows between central and more peripheral nodes.

How these properties can play together for that localized R&D collaboration

networks perform of global markets without compromising their ability to adapt to

business and market cycles? Recall that some successful clusters can decline when

the market for their products decline, while some others succeed in disconnecting

their cycle from the cycle of markets and develop renewal capabilities towards

emerging ones.

The properties of hierarchy and assortativity provide new insights for that

purpose. As a matter of fact, successful clusters at a moment in time and in a

particular technological field are the ones that have succeeded in going from the

exploration of new ideas to the exploitation of a technological standard or dominant

design on a mass market, with in between, a collective process of knowledge

integration between complementary organisations along the knowledge value

chain (Cooke 2005). Beyond the traditional scheme of exploration/exploitation

that typifies the innovation process of a single organisation, the knowledge inte-

gration phase is at the heart of the cluster’s purpose. Indeed, the success of many

products results from their degree of compositeness (Antonelli 2006), the variety of

uses and applications supported by the products, scientific as well as symbolic
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knowledge (Asheim et al. 2011), and the compatibility and easy interoperability

between elements that are the rule of a dominant design diffusion (Frenken 2006).

The chasm that sometimes prevents some products from reaching the mass market

(Moore 1991) is more often the consequence of a failed integration process, i.e. a

problem of industrial organisation, rather than a problem of the product quality in

itself. Successful clusters are therefore the ones that achieve the imposition of well-

integrated and performing complete technological systems on mass markets. As the

literature shows (Klepper and Simmons 1997; Audretsch et al. 2008), these clusters

evolve from an initial scattered structure of burgeoning organisations in the early

market stages to a structure with a limited number of hub and oligopolistic

organisations in mature markets. Along the life cycle of products, and especially

composite ones, such a network dynamic produces path dependence and techno-

logical lock-in. The more the technologies generate increasing returns to adoption,

the more markets for these technologies become locked-in and resist to other

competing technologies (Arthur 1989).

But are clusters producing these technologies necessarily locked-in too? The

answer depends on the way in which their relational structure evolves along the life

cycle of products. First, recall that R&D collaboration networks can grow through

preferential attachment. This means that the more nodes display a high degree, the

more newcomers connect to these nodes, engendering a high level of hierarchy in

the degree distribution of organisations. But secondly, recall that beyond network

growth through node entry, networks can also evolve by the addition and rewiring

of ties between existing nodes through closure or bridging (Baum et al. 2012).

When closure prevails, the cluster evolves towards a high level of transitivity

between nodes which is the mark of isomorphic and conformist relational behav-

iours. In that case, the structure of the cluster exhibits tight couplings into a core-

component and a loosely connected periphery of nodes. The ossification of the

cluster goes with the formation of an assortative collaboration network, in which

highly connected nodes are tied predominantly with other highly connected nodes,

and poorly connected nodes remains connected between themselves. On the con-

trary, a structure with a disassortative web of knowledge relationships can emerge

as the entry of newcomers and rewiring process go. For that, the node bridging

strategy has to prevail over the closure strategy. Consequently, highly connected

organisations spend a share of their relational capacity towards peripheral organi-

sations, and the network as a whole displays more paths between highly and poorly

connected nodes than for the assortative network.

The patterns governing the entry dynamics into networks and the structuring

process that follows are at the heart of the lock-in/lock-out debate. Academics

acknowledge that preferential attachment is a natural pattern of social and human

networks that contributes to fostering the legitimacy of social norms and conformist

effects in Sociology (Watts 2004), or technological standards and dominant designs

in Business Studies (Frenken 2006). But the debate between closure and bridging is

more controversial, and it is also controversial for cluster studies (Eisingerich

et al. 2010). Indeed, closure favours technological lock-in and thus the ability of

the relational structure to perform in markets. The tight coupling between high
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degree organisations favours conformism and trust in a stable and cohesive struc-

ture that prevents opportunism and promotes an efficient integration of knowledge

in a context of weak environmental uncertainty. But closure favours network

assortativity, and then prevents regional lock-out, since the low connectivity

between the core nodes and the peripheral ones limits the re-organisation of

knowledge flows when uncertainty grows or when the market starts to decline. So

when preferential attachment and closure interact, the ability of clusters to deal with

a positive technological lock-in goes against the collaboration network to produce

the conditions for a regional lock-out (Simmie and Martin 2010).

In order to foster adaptability, clusters also have to develop bridging strategies in

order to open more disruptive relations, preserving minimal cohesiveness in the

core, while multiplying the channels for potential or latent flows of fresh and new

ideas coming from peripherals nodes (Grabher and Stark 1997; Cattani and Ferriani

2008). Such a mix of patterns does not undermine the hierarchy of degrees that

emerges when the technology goes towards exploitation. But to be disassortative,

the oligopoly structure of hub-organisations that appears as the technology reaches

maturity has to maintain a not too low amount of entrepreneurial connections with

the periphery, in order to overlap exploitation in a particular knowledge domain and

exploration in another related one (Cohen and Klepper 1992; Almeida and Kogut

1997; Schilling and Phelps 2007). Such a structural property of clusters is consistent

with the behaviour of firms according to their maturity and age. Indeed, Baum

et al. (2012) develop evidence on the predisposition of organisations to deal with

closure or bridging strategies according to their age. Supposing that the age of

organisations is positively related to their hub position and high degree, then the

renewal capabilities of local knowledge structures can be weakened by an insuffi-

cient level of connectivity with newcomers, as shown by Saxenian (1990) for the

semiconductor collaboration network in the Silicon Valley. If it is supposed that the

capacity constraints in the amount of ties an organisation can maintain is related to

its size and age, as König et al. (2010) do, then the high capacities of hub and central

organisations can be a strong source of renewal if they go against the natural

tendency to reproduce existing and conformist ties. Ahuja et al. (2009) find

empirical evidence on that by capturing the micro motives for more disassortative

behaviours. They highlight a threshold and non-monotonic effect in the strategy of

embeddedness and closure between central nodes. According to them, the growing

benefits in terms of trust and knowledge acquisition can go with an increasing

rigidity and conformity that produces disincentives for new collaborations. Like-

wise, in spite of risks of knowledge hold-up and contract incompleteness, they find

that peripheral organisations succeed in connecting to central nodes, through a

“creeping” strategy facilitated by the ability of mature organisations to find some-

times new and disruptive opportunities to connect to peripheral newcomers.
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7.3 Two Simple Statistical Signatures of Collaboration

Networks

The level of hierarchy of node degree and the level of assortativity therefore appear

as two simple statistical signatures of the ability of clusters to perform but also to

avoid negative lock-in through their endogenous renewal capabilities. The follow-

ing definition of statistical signatures of localized R&D collaboration networks

aims to discuss the parameters space that allows clusters overlapping exploitation

of technologies on mature markets and exploration of new or related technologies

for emerging markets.

7.3.1 Degree Distribution and Correlation

Hierarchy and assortativity can be measured through two simple statistical signa-

tures. The first corresponds to the degree distribution of the network. By degree

distribution, we mean the relation between the ranking of nodes in a network

according to their degree and their actual degree.1 The more sloped the distribution

is, the more the network displays hierarchy in the degree of nodes. From weakly

connected nodes to highly connected nodes, the degree distribution exemplifies the

level of heterogeneity in the network in terms of actual relational capacity. The

second property corresponds to the degree correlation. Here, degree correlation is

defined as the relation between the degree of each node and the mean degree of

nodes in its neighbourhood. Networks can be characterized as assortative or

disassortative to the extent that they display a positive or negative degree correla-

tion. A network is assortative when high degree nodes are connected to other high

degree nodes, and low degree nodes are preferentially connected to low degree

nodes, so that the degree correlation is positive. And a network is disassortative

when high degree nodes tend to connect to low degree nodes, and vice versa, so that

the degree correlation is negative. For a given amount of nodes and ties in a

particular network, one can easily capture these two salient properties.

Consider a fixed number of nodes and ties in a network N.2 If we note k the

degree of a particular node h, we can then write two simple equations to charac-

terize the network topology. By referring to a rank-size rule, we can classify node

degrees from the largest to the smallest3 and then draw the distribution on a log-log
scale. Such that:

1 Another traditional representation consists in mapping degree distribution using frequencies of

degree values.
2 Then we only focus on the structuring of the network. Entries are considered as exogenous, or

occurring in previous periods.
3 If two nodes have the same degree, we arbitrarily rank them as long as it has no incidence on the

slope on the power law.
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kh ¼ C k�h
� �a

,

with k�h being the rank of the node h in the degree distribution, C a constant and

a < 0 the slope of the distribution or equivalently,

log khð Þ ¼ log Cð Þ þ alog k�h
� �

Secondly, we can calculate for each node h, the mean degree of the relevant

neighbourhood (Vh), i.e.,

kh ¼ 1

kh

X
i∈Vh

ki,

where ki is the degree of node i belonging to the interaction neighbourhood of

node h.

Then we estimate a linear relationship between kh and kh, such that

kh ¼ Dþ bkh,

with D a constant and b a coefficient capturing the degree correlation.

If b > 0, the network N exhibits assortativity with a positive degree correlation,

whereas if b < 0, the network N is disassortative with a negative degree correlation.

Finally, thanks to the ordinary least squares method, the joint estimation of

parameters a and b enables us to characterize useful structural network properties.

degree distribution : log khð Þ ¼ log Cð Þ þ alog k�h
� �

degree correlation : kh ¼ Dþ bkh

�
ð7:1Þ

7.3.2 Discussion

Using Eq. 7.1, and considering a fully connected network N with a fixed number of

nodes (n ¼ 33) and ties (t ¼ 64),4 Fig. 7.1 summarizes this proposition, giving

more details on three typical topologies and their statistical signatures.

(i) The so-called “flat” network presents a relatively flat degree distribution |

a| ¼ 0,37 with a degree correlation b ~ 0. This type of collaboration network

displays a strong potential for knowledge flows re-organisation and diffusion

since the nodes are linked by many paths. But such a random network does not

succeed in generating conformity effects and the emergence of technological

standards. Indeed, the lack of cohesiveness in to the network and the absence

4 In such a way that the density remains the same for the three networks 2t/n(n � 1) ¼ 0.1212,

where t is the number of actual links and n the number of nodes).
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of a core group weaken the control of collective behaviours that would

exploit products on the market by efficiently gathering pieces of knowledge.

(ii) On the contrary, the assortative network presents a strong slope in the degree

distribution |a| ¼ 0,89 so that the cohesiveness of the core promotes a confor-

mity effect, and, from a technological perspective, a high probability of the

emergence of a standard. Nevertheless, its strong assortative structure (b > 0)

weakens its renewal properties since peripheral nodes are loosely connected to

the central ones. This excess of assortativity will reduce the ability of the

existing structure to activate new explorative ties when markets for the

exploited technology decline, due to a weak level of bridging between the

oligopoly structure and the peripheral ones. Therefore the assortative knowl-

edge network favours technological lock-in without maintaining regional

lock-out conditions because of its relative inability to overlap exploitation

links on mature markets and explorative ones on emerging related ones.

(iii) Finally, the resilient network exhibits here again a high sloped degree distri-

bution with |a| ¼ 1,06, but the degree correlation is now negative (b < 0), so
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Fig. 7.1 Network topology, degree distribution and degree correlation
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that the network presents a certain level of disassortativity. In other words, this

negative correlation indicates a high level of connections between the core and

the periphery of the collaboration network, so that information and knowledge

can circulate through many structural bridges between highly and poorly

connected nodes. Thus targeted shocks on core members do not weaken the

whole structure to the same extent as in the previous structure. Similarly,

innovative or explorative behaviour can diffuse more easily from peripheral

to central members, due to the ability of the oligopolistic organisations to

combine closure and bridging and overlap explorative and exploitive phases in

their relational patterns.

Figure 7.2 provides a more abstracted representation of these critical structural

properties of local knowledge networks.

By representing degree distribution and degree correlation in the same layout,

one can have a better understanding of how the structure and properties of local

clusters can together improve aggregate performance and structural conditions for

renewal along the cycles of markets. The further up in the layout a cluster is, the

more the structural hierarchy of its collaboration network enables it to impose

standards and dominant designs on markets. And the further left in the layout it

is, the more the disassortative patterns of relationships in the network increase

regional renewal capabilities. The emerging oligopolistic structure that arises when

the technology reaches maturity has to remain sufficiently linked to fresh and new

ideas coming from peripheral but promising nodes for future collaborations. On the

other hand, when closure strategies in the mature oligopolistic structure exceed a

certain threshold, then redundancy of knowledge flows and conformity effects

prevail and the possibilities for regional resilience fall unavoidably. Then if some

clusters decline when their dedicated markets decline, the reasons are not neces-

sarily to find in an ossification of the structure of the network or in an excess of

rigidity due to the firm growing size, but in the relational strategies of hub and

Fig. 7.2 Statistical signatures of cluster structural properties
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leading organisations, and a decreasing degree of openness towards peripheral but

strategic newcomers.

7.4 Conclusion

In spite of its high level of abstraction and complexity, the science of networks

applied to geography of innovation provides promising perspectives for static as

well as dynamic analysis of clusters. Here we have tried to show that it was possible

to reduce this complexity to two simple statistical signatures of collaboration

networks. Degree distribution and degree correlation highlight the critical structural

properties that increase the performance of clusters in a particular technological

field, without decreasing their renewal properties. If the hierarchy of degrees is a

more or less common pattern of social and organisational networks, disassortativity

is less manifest. Indeed, human and social behaviours are generally characterized

by structural homophily, so that the more an agent increases its relational capacity,

the larger is his tendency to interact with other highly connected agents. However,

this property of assortativity of local knowledge networks weakens the ability of

clusters to combine market exploitation and absorption of fresh and new ideas, and

then, can be a source of negative regional lock-ins.

The combined measures of degree distribution and degree correlation confirm

that a window of parameters exists, for which clusters can display performance in

the short run, and renewal capabilities in the long run. Capturing this window more

precisely requires an additional effort of modelling. But at this stage, such a

framework furnishes new perspectives to highlight empirical evidence on the

ability of regional systems of innovation to resist and adapt to turbulent macroeco-

nomic environments, new growing consumer paradigms and the shortening of

market cycles.
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Chapter 8

Observing Integration Processes in European

R&D Networks: A Comparative Spatial

Interaction Approach Using Project Based

R&D Networks and Co-patent Networks

Rafael Lata, Thomas Scherngell, and Thomas Brenner

Abstract This study focuses on integration processes in European R&D by ana-

lyzing the spatio-temporal dimension of two different R&D collaboration networks

across Europe. These networks cover different types of knowledge creation, namely

co-patent networks and project based R&D networks within the EU Framework

Programmes (FPs). Integration in European R&D – one of the main pillars of the

EU Science Technology and Innovation (STI) policy – refers to the harmonisation

of fragmented national research systems across Europe and to the free movement of

knowledge and researchers. The objective is to describe and compare spatio-

temporal patterns at a regional level, and to estimate the evolution of separation

effects over the time period 1999–2006 that influence the probability of cross-

region collaborations in the distinct networks under consideration. The study adopts

a spatial interaction modeling perspective, econometrically specifying a panel

generalized linear model relationship, taking into account spatial autocorrelation

among flows by using Eigenfunction spatial filtering methods. The results show that

geographical factors are a lower hurdle for R&D collaborations in FP networks than

in co-patent networks. Further it is shown that the geographical dynamics of

progress towards more integration is higher in the FP network.
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8.1 Introduction

Today it is widely recognised that first, innovation processes are increasingly based
on interaction, research collaborations and networks of various actors (see, for

instance, Powell and Grodal 2005),1 and, second, innovation is the key element

for sustained economic growth of firms, industries, regions and countries (see, for

example, Romer 1990).2 Based on these arguments, the main focus of the Europe

2020 Strategy is on research and innovation in order to achieve a new growth path

that leads to a smart, sustainable and inclusive economy (European Commission

2011). In this context, the concept of the Innovation Union – one of the seven

flagships scheduled in the Europe 2020 Strategy – is intended to improve conditions

for innovation and knowledge diffusion to ensure that innovative ideas are effi-

ciently turned into new products and services that create growth and employment

(European Commission 2010). One of the main pillars of the Innovation Union is

the realisation of an integrated European Research Area (ERA), defined as one

explicit principal purpose to fulfil progress towards the Innovation Union.

The concept of the European Research Area (ERA) refers to the objective to

enable and facilitate “free circulation of researchers, knowledge and technology”

across the countries of the EU, and, by this, stimulating integration processes in

European R&D (see Commission of the European Union (CEU) 2008, p. 6). This

policy goal is to be addressed by improving coherence of the European research

landscape, thus removing barriers – such as geographical, cultural, institutional and

technological impediments – for knowledge flows, knowledge diffusion and

researcher mobility by a European-wide coordination of national and regional

research activities and policy programmes, including a considerable amount of

jointly-programmed public research investment (see Delanghe et al. 2009).

To gain insight into the nature of integration processes in European R&D, there

is urgent need for analysing the geographical dimension of R&D networks across

1 The literature on R&D networks underlines the crucial importance of cooperative agreements

between universities, companies and governmental institutes, for developing and integrating new

knowledge in the innovation process (see Powell and Grodal 2005). This is explained by consid-

erations that innovation nowadays takes place in an environment characterised by uncertainty,

increasing complexity and rapidly changing demand patterns in a globalised economy. Organisa-

tions must collaborate more actively and more purposefully with each other in order to cope with

increasing market pressures in a globalizing world, new technologies and changing patterns of

demand. In particular, firms have expanded their knowledge bases into a wider range of technol-

ogies (Granstand 1998), which increases the need for more different types of knowledge, so firms

must learn how to integrate new knowledge into existing products or production processes. It may

be difficult to develop this knowledge alone or acquire it via the market. Thus, firms form different

kinds of co-operative arrangements with other firms, universities or research organisations that

already have this knowledge to get faster access to it.
2 The theory of endogenous growth, and the geography-growth synthesis both consider that

economic growth and spatial concentration of economic activities emanate from localised knowl-

edge diffusion processes, in particular transferred via network arrangements between different

actors of the innovation system.
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Europe from a longitudinal perspective. The geography of such networks has –

from a static perspective – attracted increasing interest in Regional Science and

Economic Geography in the recent past. While from its beginning, the measure-

ment of such phenomena has faced numerous problems, the empirical investigation

of knowledge flows and R&D collaborations has significantly improved during the

1990s by using new indicators such as patent citations (see, for instance, the

pioneering study by Jaffe et al. 1993; Fischer et al. 2006), co-publications (see,

for instance, Hoekman et al. 2010) or project based R&D networks within the FPs

(see Scherngell and Barber 2009, 2011), and by introducing new methods, in

particular new spatial econometric techniques (see, for instance, LeSage

et al. 2007). Recent studies focus on the structure of knowledge flows by adopting

a spatial interaction modelling perspective (see, for instance, Scherngell and Barber

2009), employing a social network analysis perspective (see, for instance, Breschi

and Cusmano 2004) or a combination of both (see Barber and Scherngell 2011).

However, as these studies just provide a static picture on the geography of R&D

collaborations, novel questions arise – both in theoretical and empirical research as

well as in a European policy context – regarding R&D network structures and its

dynamics. Concerning the particular focus on integration processes in European

R&D, the evolution of different kinds of separation effects over time – such as

geographical, technological, institutional or cultural barriers – that determine R&D

collaboration networks is of crucial interest. Thus, this study shifts emphasis to the

investigation of the geographical dynamics of two different types of R&D collab-

oration networks across Europe, namely co-patent networks and project based R&D

networks within the European Framework Programmes (FPs). We take these types

of R&D collaboration networks to analyse integration processes in European R&D

over time from two different angles, shifting attention to a comparison of European

integration processes in these networks.

By this, the study addresses one of the major drawbacks of the current empirical

literature: the lack of a longitudinal and comparative perspective on distinct R&D

collaboration networks. Some exceptions are the studies of Maggioni and Uberti

(2009), Hoekman et al. (2010, 2013), and Scherngell and Lata (2013).3 The current

study intends to complement the picture drawn in these studies, by shifting attention

to a longitudinal and comparative perspective on two different R&D networks

across Europe. The objective is to identify and compare the evolution of

3Hoekman et al. (2010) and Scherngell and Lata (2013) investigate the ongoing process of

European integration by determining the impact of geographical distance and territorial borders

on the probability of research collaborations between European regions. By analysing

co-publication and FP network patterns and trends, the authors show that geographical distance

has a negative effect on co-publication activities and FP cooperation, while for the FP networks

this effect decreases over time. The study of Maggioni and Uberti (2009) focuses on the structure

of knowledge flows by analysing four distinct collaboration networks, including co-patenting.

Hoekman et al. (2013) focus on the effect of participation in FP networks on subsequent

international publications, showing that the FPs indeed positively influence international

co-publications, and, by this, seem to enhance integration across Europeans research systems.
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geographical, technological, institutional or cultural effects that influence the prob-

ability for collaboration activities in the different collaboration networks, and

provide direct evidence on integration processes in European R&D from different

angles. We adopt a regional perspective that is an appropriate approach to observe

different R&D collaboration networks in geographical space (see, for instance,

Hoekman et al. 2010; Scherngell and Barber 2009) over the time period 1999–2006.

The study employs a Poisson spatial interaction modelling perspective to address

these research questions. We adjust the spatial interaction models by accounting for

spatial autocorrelation issues of flows by means of Eigenvector spatial filtering (see

Chun 2008; Scherngell and Lata 2013).

The paper is organised as follows. Section 8.2 sets forth the conceptual back-

ground of the study with a special focus on ERA, before Sect. 8.3 reflects on the

different types of R&D collaboration networks under consideration. Section 8.4

describes the empirical setting and the data, accompanied by some descriptive

statistics and exploratory spatial data analysis. Section 8.5 specifies the empirical

model in form of a panel version of the spatial interaction modelling framework that

is used to identify the evolution of separation effects influencing the probability of

cross-region collaboration activities in the distinct networks. Section 8.6 presents

the modelling results, before Sect. 8.7 closes with a summary of the main results

and some conclusions in a European policy context.

8.2 The ERA Goal of Progress Towards More Integration

in European R&D

One significant turning point in the EU Science, Technology and Innovation (STI)

policy was the design of the concept of the European Research Area (ERA)

presented at the Lisbon Council in the year 2000, rooted in the increasing awareness

that European research activities suffer from diverse and fragmented national

research systems (Boyer 2009). The overall goal of ERA is to overcome fragmen-

tation in the European research system and to address the establishment of an

‘internal market’ for research across Europe, where researchers, technology and

knowledge are supposed to circulate freely (see Delanghe et al. 2009; European

Council 2000). The ERA green paper (CEC 2007) underlines the overall objectives

of the Lisbon strategy, emphasising that the future European science and research

landscape should be characterised by an adequate flow of competent researchers

with high levels of mobility between institutions by integrated and networked

research infrastructures and effective knowledge sharing, notably between public

research and industry. This requires the reduction of geographical, cultural, insti-

tutional, and technological obstacles in order to generate research collaboration

across European regions and countries (see, for instance, Hoekman et al. 2013;

Scherngell and Lata 2013).
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The Framework Programmes (FPs) of the European Commission (EC) constitute

the main instrument to achieve this goal, shifting emphasis on supporting and

stimulating collaborative R&D activities between innovating organisations across

Europe, in particular firms and universities. At the same time, regional and national

research policies deal with similar issues as reflected by a growing awareness

among national policy makers that national efforts are often insufficient to keep

pace in the international innovation competition. In this context the European

Council underlined the importance of cross border cooperation for the achievement

of these objectives and put collaborative R&D activities at the centre of its strategy

(Guzzetti 2009). Svanveldt (2009) highlights the crucial importance of cross-border

cooperation as instrument for adequately dealing these challenges.

During the last decade, the ERA concept has been developed further, becoming

strong political support in the context of the conception of the so-called Innovation
Union (European Commission 2010). As one of the seven flagships scheduled in the

Europe 2020 Strategy, the Innovation Union is intended to improve framework

conditions for innovation and knowledge diffusion. Moreover one of the main

objectives of the Innovation Union is to “. . . quickly taking all measures necessary

for a well functioning and coherent European Research Area in which researchers,

scientific knowledge and technology circulate freely, in which RDI investments are

less fragmented and the intellectual capital across Europe can be fully exploited”
(European Commission 2010, p. 7). In order to tackle these challenges, specific

commitments have been introduced. One of these commitments is to complete the

ERA by 2014 with the goal to remove the remaining obstacles for collaborative

knowledge production and consequently to foster the integration in the European

research landscape (European Commission 2010).

With this in mind, the present study aims to evaluate the progress towards more

integration in European R&D – as formulated in the concept of ERA and the

Innovation Union. To gain empirical insight into the nature of such integration

processes across Europe, the study focuses on a broad spectrum of R&D collabo-

ration activities, namely co-patent networks and project based R&D networks

within the FPs. In estimating the evolution of separation effects that capture the

above mentioned obstacles for collaborative knowledge production across Europe,

the analysis will show distinct mechanisms of integration processes corresponding

to the different types of R&D networks. The section that follows reflects on the two

different network types under consideration in some detail.

8.3 A Network Perspective on Integration in European

R&D

R&D networks – defined as sets of organisations performing joint R&D activities –

have attracted burst of attention in the recent past as essential element of modern

knowledge production and innovation processes (see, for instance, Castells 1996).
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In the current study, we take such network arrangements across Europe to analyse

integration processes in European R&D, focusing on two different types of net-

works that capture different types of knowledge production processes. We focus on

R&D networks in the form of joint patenting, resulting in co-patents, and project

based R&D networks within the FPs.

Co-patent networks mainly reflect research collaborations that are related to

applied knowledge generation focusing on the development of marketable innova-

tions and industry research activities (Maggioni and Uberti 2009). Patents represent

a well established indicator of knowledge generation activities and are widely used

in empirical studies on knowledge flows (see, for instance, Jaffe et al. 1993; Fischer

et al. 2006). A co-patent is defined as a patent invented by at least two inventors

from two different organisations. Therefore, it represents knowledge exchange

across actors within an inventor network in the process of patenting an invention

(see, for instance, Ejermo and Karlsson 2006).

The second type of R&D networks refers to project based R&D collaboration

within the FPs. While co-patent networks mainly reflect applied research, project

based FP networks involve basic and applied research aspects, given by the fact that

publications and patents may be outputs of FP networks. In the FP network, the

research collaboration is constituted by joint R&D projects conducted by organi-

sations distributed across Europe. The FPs are the main political instrument to

support pre-competitive collaborative R&D within the European Union. The key

objectives are, first, to strengthen the scientific research and technological devel-

opment in the scientific landscape, and, by this, to foster the European competi-

tiveness, and, second, to promote research activities in support of other EU policies

(Maggioni et al. 2009).4 FP projects share specific characteristics (see for example

Roediger-Schluga and Barber 2006). First, they are all promoted by self-organised

consortia and have distinct partners – for instance individuals, industrial and

commercial firms, universities, research organisations, etc. – that are located in

different EU members and associated states. Second, they focus primarily on

pre-competitive R&D projects. Third, they are characterised by less market orien-

tation and longer development periods (Polt et al. 2008).

Given the properties of the two different network types under consideration, it

may be hypothesised that integration processes for these network types differ. This

may, on the one hand, be related to the different knowledge generation processes in

these networks, on the other hand, to governance rules and policy programmes

implemented by the EC influencing the resulting network structures. Spatial inter-

action models (see Sect. 8.5) will enable us to proof this hypothesis, and disclose

distinct spatial characteristics and collaboration patterns in the networks under

4 Since their introduction in 1984, different thematic aspects and issues of the European scientific

landscape have been addressed by the FPs. Although the FPs have undergone different changes in

their orientation during the past years, their fundamental rational remained unchanged (Roediger-

Schluga and Barber 2006).
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consideration, and, by this, drawing a more detailed picture on integration processes

in European R&D.

8.4 Data and Descriptive Statistics

In our empirical analysis we aim to investigate integrations processes in European

R&D networks focusing on two different types of collaboration networks, that is FP

collaboration networks and co-patent networks. The EUPRO database is used to

capture project based R&D networks within the FPs, while the Regpat database is

taken to construct co-patent networks. The EUPRO database currently comprises

information on more than 60,000 research projects funded by the EU FPs and all

participating organisations. A network link is given between two organisations

when they conduct a joint research project in the FPs. We use information on the

geographical location in form of the city to trace the geographical dimension of the

network. The Regpat database contains information on patent applications from

various patent offices worldwide. It is provided by the OECD and contains, among

many others, all patent applications issued at the European Patent Office (EPO), and

the national patent offices of the European countries. A network link between two

organisations is given when inventors from two different organisations appear on a

patent application. We use information on the inventor address of an EPO patent

application to trace the origin of the invention.

The European coverage is achieved by using i, j ¼ 1, . . ., n NUTS-2 regions5 of
the 25 pre-2007 EU member-states as well as Norway and Switzerland. We extract

n-by-n collaboration matrices for each time period t ¼1,. . ., T, both for the FP- and

for the co-patent network, by aggregating the number of individual collaborative

activities at the organisational level in time period t to the regional level. This leads
to the observed number of R&D collaborations yijt between two regions i and j in
time period t in the respective network, that is the FP and the co-patent network.

The resulting regional collaboration matrix Yt for the two networks
6 for a given year

t contains the collaboration intensities between all (i, j)-region pairs, given the

i ¼ 1,. . ., n regions in the rows and the j ¼ 1,. . ., n regions in the columns.7

Figure 8.1 illustrates the spatial distribution of the cross-region R&D collaborations

in the FP- (Fig. 8.1a) and the co-patent network (Fig. 8.1b) across Europe. In the

5Although substantial size differences and interregional disparities of some regions exist, these

units are widely recognized to be an appropriate level for modelling and analysis purposes (see, for

example, LeSage et al. 2007).
6 Note that we do not distinguish between the FP network and the co-patent in the formal

description of data as well as the modelling approach in the section that follows.
7We use a full counting procedure for the construction of our collaboration matrices (see, for

example, Katz 1994). For a project with, for example, three different participating organizations a,

b and c, which are located in three different regions, we count three links (from a to b, from b to c

and from a to c).
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spatial network maps, the sizes of the nodes are proportional to the number of

regional participations in the two distinct networks. The darkness of the lines

corresponds with the number of joint R&D collaborations between two regions,

i.e. the darker the higher the interaction intensity. It is shown that the spatial

structures of the distinct networks differ markedly. The most striking difference

concerns the fact that the international collaboration activity is much higher in the

FP network than in the co-patent network. In the latter, R&D collaborations are

widely confined within national boundaries, while such boundaries seem to play a

minor role for the structure of the FP network. Furthermore, the intra-regional

collaboration intensity seems much higher in the co-patent network than in the FP

network, pointing to the geographical localisation of the co-patents within NUTS-2

regions, while the cross-region collaboration intensity is much higher in the FP

network.

Concerning the spatial distribution of the regions with high intra-regional

co-patent activities, a high intensity can be found for regions belonging to the

traditional industrial core of Europe (see Hoekman et al. 2012), also referred to as

the European ‘blue banana’ (Brunet 2002), while the participation within the FP

network seems to be spatially more dispersed. However, both networks seem to be

spatially concentrated in some European regions that show high collaboration

intensity. In this context the question arises, whether a spatial clustering of inter-

action patterns in the two networks can be observed, and which network shows a

higher degree of spatial clustering, also referred to as spatial autocorrelation of

flows (see, for instance, Berglund and Karlstrom 1999). Spatial autocorrelation of

flows is, for example, when flows from a particular origin may be correlated with

other flows that have the same origin, and, similarly, flows into a particular

destination may be correlated with other flows that have the same destination

(Scherngell and Lata 2013). In our case, this means that the intensity of R&D

Fig. 8.1 Spatial distribution of the cross-region R&D networks for the year 2006. (a) R&D

collaborations within the FP-network. (b) R&D collaborations within the co-patent network
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collaborations from an origin region i to a destination region j may be correlated

with the intensity of R&D collaborations from the same origin i to another desti-

nation j, or vice versa. Such a situation is specifically interesting from the perspec-

tive of our research question on integration in European R&D, namely by assessing

whether such R&D collaborations are statistically concentrated to a geographical

core of regions that are located nearby to each other.8

In order to test for the existence of spatial autocorrelation of flows, we calculate

a Moran’s I test for spatial dependence as widely used in exploratory spatial data

analysis (see Griffith 2003), given by

It ¼ yt
0
W�yt
yt

0
yt

ð8:1Þ

where yt is a vector of our observed collaboration flows at time t with N ¼ n2

elements (yijt) ¼ (y11t, . . ., y1nt, y21t, . . ., y2nt, . . ., yn1t, . . ., ynnt), and W* is defined

by W
N

W where W is the n-by-n spatial weights matrix and
N

denotes the

Kronecker product. For W, we set

wij ¼ 1 if s
1ð Þ
ij � s

1ð Þ
ig ið Þ

0 otherwise

(
ð8:2Þ

where sij
(1) measures the great circle distance between the economic centers of two

regions i and j, and gi denotes the g-nearest neighbour of i. We define g ¼ 5, as used

in various empirical studies dealing with European regions (see, for instance,

Scherngell and Lata 2013). The respective Moran’s I statistics for the years

1999–2006 are reported in Table 8.1. The results are most often significant pointing

to substantial spatial autocorrelation of R&D collaborations in both networks under

consideration, i.e. a high number of flows is correlated with flows that come from

nearby origins, and going into nearby destinations. However, the degree of spatial

dependence is much higher for the co-patent network as has been expected consid-

ering the spatial distribution of the flows that are visualised in Fig. 8.1. Further-

more, the Moran’s I for the FP network shows a decreasing trend, while for the

co-patent network no time trend can be observed, pointing to differences in

8 From a theoretical perspective the spatial autocorrelation of R&D collaboration flows may be

explained by the assumption that the collaboration behaviour of one region influences the

collaboration behaviour of neighbouring regions because – as described in various empirical

studies – contiguity of regions may induce knowledge flows between them, to them, and from

them, and, thus, evoke the transfer of information on potential collaboration partners that are

located further away (Scherngell and Lata 2013). To give an example, if region A has many

collaborations with region B (that is no neighbour of region A), region A may influence a

neighbouring region C also to collaborate with region B due to information flows between region

A and region C, in particular flows of ‘know who’ type information (see Cohen and Levinthal

1990).
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integration processes for the two network types. In this context, the existence of

spatial autocorrelation also bears important implications in a modeling context,

since estimates may be biased neglecting spatial autocorrelation issues of flows

(see, for instance, Fischer and Griffith 2008; Scherngell and Lata 2013).

8.5 The Empirical Model

This section shifts direct attention to the modelling approach used to estimate how

specific separation effects influence the variation of cross-region R&D collabora-

tions in two distinct collaboration networks over time, and, by this, providing direct

evidence on distinct integration processes in different types of R&D. We employ a

spatial interaction modelling approach.9 In implementing a panel version of the

spatial interaction model, we are able to identify time effects that are necessary to

observe potential integration processes of the networks over the time period

1999–2006. In what follows we will specify the panel version of the spatial

interaction model, an extension accounting for spatial autocorrelation issues of

flows, and describe the independent variables of the model.

8.5.1 The Panel Version of the Spatial Interaction Model
to Be Estimated

Let us denote Yijt as a random dependent variable corresponding to observed R&D

collaborations yijt within the FP- or the co-patent network between origin i (i ¼ 1,

. . ., n) and destination j ( j ¼ 1, . . ., n) at time t (t ¼ 1, . . ., T ). As in the previous

section, we do not distinguish between the two networks in the formal model

presentation; our basic model is given by

Table 8.1 Spatial autocorrelation of R&D collaboration in two distinct networks

Moran’ I

1999 2000 2001 2002 2003 2004 2005 2006

FP-network 0.016* 0.006* 0.003* 0.000 �0.001 0.007* �0.009 �0.001

Co-patent network 0.136* 0.120* 0.132* 0.144* �0.139* 0.153* 0.146* �0.147*

*significant at the 0.001 significance level

9 Spatial interaction models are widely used for modelling origin-destination flows data and were

used to explain different kinds of flows, such as migration, transport or communication flows,

between discrete units in geographical space (see, for instance, Fischer and LeSage 2010 among

many others).
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Yijt

��yijt ¼ μijt þ εijt i, j ¼ 1, . . . , n; t ¼ 1, . . . , T ð8:3Þ

where μijt denotes some mean expected interaction frequency between origin i and
destination j at time t, εijt some disturbance term about the mean with the property

E[εijt|yijt] ¼ 0. As in classical spatial interaction theory (see, for instance, Fischer

and LeSage 2010), we model the mean interaction frequencies μijt between origin

i and destination j at time t by some origin function Oit which characterizes the

origin i of interaction in time period t, some destination function Djt which

describes the destination j of interaction in time period t, and some separation

function Sijt which accounts for the separation between an origin region i and a

destination region j in time period t. Then we use a multiplicative relationship for

our basic model, given by

μijt ¼ Oit Djt Sijt i, j ¼ 1, . . . , n; t ¼ 1, . . . ,T ð8:4Þ

where

Oit ¼ oα1it i, j ¼ 1, . . . , n; t ¼ 1, . . . , T ð8:5Þ
Djt ¼ dα2jt i, j ¼ 1, . . . , n; t ¼ 1, . . . ,T ð8:6Þ

Sijt ¼ exp
XK

k¼1

βk s
kð Þ
ijt

" #
: i, j ¼ 1, . . . , n; t ¼ 1, . . . , T ð8:7Þ

oit and djt are origin and destination variables, s
ðkÞ
ijt are K (k ¼ 1, . . ., K ) separation

variables that are introduced below. α1, α2 and ßk are parameters to be estimated.

As has come into fairly wide use for spatial interaction models, we assume

(Yij) ~ Poisson due to the true integer non-negative count nature of our R&D

collaboration flows (see, for instance, Cameron and Trivedi 1998; Fischer

et al. 2006). The resulting panel version of the Poisson spatial interaction model

is given by,

μijt ¼ exp α1log oitð Þ þ α2log djt
� �þ

XK

k¼1

βks
kð Þ
ijt þ γij

" #
ð8:8Þ

where γij denotes the unobserved individual specific effect, also referred to as the

one-way error component model (see Baltagi 2008). The random term γij is time

invariant but varies across all (i, j)-region pairs. In our case γij accounts for region-
pair specific effects that are not included in the model. We assume the γij to be

correlated across our time periods for the same (i, j)-region pair, i.e. we follow a

random effects specification, and integrate out the random effect γij of the joint

probability ∏ T
t ¼ 1Pr(yij1, . . .,yijT) by obtaining
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Pr yij1; . . . ; yijT

� ffi
¼

ð
Pr yij1, . . . , yijT , γij

� ffi
dγij ¼

ð
Pr yij1, . . . , yijT

�� γij
� ffi

g γij
� �

dγij:
ð8:9Þ

Note that this is the same approach used in models for event counts to condition

the heterogeneity out of the Poisson model to produce the Negative Binomial model

(see Baltagi 2008), i.e. when (Yij) ~ Poisson with mean μijt as given by Eq. 8.8, and
exp(γij) ~ Gamma, then our random effects Negative Binomial spatial interaction
model to be estimated is

Pr yij1; . . . ; yijT

� ffi
¼

YT

t¼1
μijt

yijt
� ffi

Γ θ þ
XT

t¼1
yijt

� ffi

Γ θð Þ
YT

t¼1
yijt!

� ffi XT

t¼1
μijt

� ffi
XT

t¼1
yijt

2

4

3

5
Qi 1� Qið Þ

XT

t¼1
yijt

ð8:10Þ

with

Qi ¼
θ

θ þ
XT

t¼1
μijt

ð8:11Þ

where Γ(.) denotes the Gamma distribution and θ its variance. Parameter estimation

is achieved via maximum likelihood estimation procedures (see Cameron and

Trivedi 1998).

8.5.2 Accounting for Spatial Autocorrelation and Time
Effects

Given the results of the spatial autocorrelation analysis of the previous section, it

can be assumed that spatial dependence among our collaboration flows may lead to

biased estimates. Thus, we re-specify our panel version of the Negative Binomial

spatial interaction model by accounting for spatial autocorrelation issues as well as

by introducing time effects enabling us to infer on time trends concerning the

evolution of collaboration patterns in the two networks.

As noted by Chun (2008), maximum likelihood estimation assumes that all

observations, in our case collaboration flows in our two networks under consider-

ation, are mutually independent. A violation of this assumption may be in particular

induced by spatial autocorrelation of flows leading to incorrect inferences due to

inconsistence of the standard errors, and, thus, unrealistic significances (Chun 2008;
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Griffith 2003).10 We follow Scherngell and Lata (2013) who apply a spatial filtering

method to filter out spatial autocorrelation of residual flows in a Negative Binomial

spatial interaction context. The essence of the spatial filtering approach is to extract

eigenvectors from a modified spatial weights matrix that serve as spatial surrogates

for omitted spatially autocorrelated origin and destination variables (see Fischer

and Griffith 2008). These proxy variables are extracted as n eigenvectors11 from the

modified spatial weights matrix of the form I� 11T 1
n

� �
W I� 11T 1

n

� �
with I

denoting the n-by-n identity matrix, 1 is an n-by-1 vector of one’s, 1T its transpose,
and W the n-by-n spatial weights matrix, as defined by Eq. 8.2. The eigenvectors

can be interpreted as synthetic map variables that represent specific natures and

degrees of potential spatial autocorrelation (Chun 2008; Griffith 2003).

As noted by Griffith (2003) it is not appropriate to use the full set of En

eigenvectors for the construction of the spatial filter variables. Further, we face a

situation where Eigenvectors have to be selected for each time period due to the

panel version of the spatial interaction model (Patuelli et al. 2011). As in Patuelli

et al. (2011) we select in a first step a subset of distinguished eigenvectors on the

basis of their Moran’s I values. Then, we follow Fischer and Griffith (2008) and

extract those Eigenvectors Em that show a higher Moran’s I value than 0.25. In a

second step, it is necessary to adapt these Eigenvectors to our spatial interaction

framework; origin candidate eigenvectors are drawn from 1
N

Em and the desti-

nation candidate eigenvectors are obtained from Em

N
1. In a third step, these

Eigenvectors are added as explanatory variables to T ¼ 9 cross-section versions of

the Negative Binomial spatial interaction model, from which statistically signifi-

cant Eigenvectors are identified. In a fourth step, we determine those eigenvectors

that are significant over all time periods and define the resulting set of common

origin and destination eigenvectors, Eq and Er, respectively, as our time invariant

10 One way to capture spatial autocorrelation of flows is the use of spatial autoregressive tech-

niques (LeSage and Pace 2008). An alternative approach is the use of spatial filtering methods. The

key advantage of the spatial filtering approach is that it can be applied to any functional form and

thus, does not depend on normality assumptions (Patuelli et al. 2011). Consequently, we prefer the

spatial filtering approach over spatial autoregressive model as we are dealing with a Poisson spatial

interaction framework.
11 The extracted eigenvectors have several characteristics. First, as shown by Griffith (2003), each

extracted eigenvector relates to a distinct map pattern that has a certain degree of spatial

autocorrelation. Second, the selected eigenvectors are centered at zero due to the pre and post

multiplication of W by the standard projection Matrix I� 11T 1
n

� �
. Third, the modification of W

ensures that the eigenvectors provide mutually orthogonal and uncorrelated map patterns ranging

from the highest possible degree of positive spatial correlation to highest possible degree of

negative spatial correlation as given by the Moran’s I (MI). (Griffith 2003). Hence, the first

extracted eigenvector is the one showing the highest degree of positive spatial autocorrelation

that that can be achieved by any spatial recombination; the second eigenvector has the largest

achievable degree of spatial autocorrelation by any set that is uncorrelated with until the last

extracted eigenvector will maximize negative spatial autocorrelation (Griffith 2003).
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spatial filter.12 The time invariant spatial filter covers the total number of space-

time observations, and accounts for spatial dependence of flows in our origin and

destination data.

We add the selected origin filters Eq and destination filters Er as regressors to our

panel version of the Negative Binomial spatial interaction model. Further we

introduce the subset of Zt time dummies in order to capture aggregate year effects

(Woodridge 2008).13 This leads to the spatially filtered panel version of the

Negative Binomial spatial interaction model accounting for time effects, given by

re-specifying the conditional mean μijt so that

μijt ¼

exp
XQ

q¼1

Eqψq þ α1log oitð Þ þ
XR

r¼1

Er φr þ α2log djt
� �þ

XK

k¼1

βks
kð Þ
ijt þ

XT

t¼1

Ztνt þ γij

" #

ð8:12Þ

The coefficients to be estimated for the spatial filters are ψq and φr, νt is the

associated parameter for the time dummy at time t.

8.5.3 Independent Variables

We use one origin measure, and one destination measure for the FP network model

and the co-patent network model. For the model on the FP networks, the origin

variable oit is measured in terms of organizations participating in joint FP projects

in region i, while the destination variable dit denotes the number of organizations

participating in joint FP projects in region j. For the co-patent network model, the

origin variable oit is measured in terms of the number of co-patents in region i,
while the destination variable dit denotes the number of co-patents in region j.

From the background of our research focus our interest is on K ¼ 5 separation

measures: s
ð1Þ
ijt measures the geographical distance between the economic centres of

two regions i and j in time period t, by using the great circle distance.14 s
ð2Þ
ijt is a

neighbouring region dummy variable that takes a value of one if the regions i and

12We use an time invariant specification of the spatial filter as we assume an time invariant

underlying spatial process.
13 In order to determinate changes of our separation variables we include interaction terms (see, for

an overview, Wooldridge 2008). In this procedure, variables of interest, for example R&D (see,

Griliches 1984), interact with time dummy variables and illustrate if effects changed over a certain

time period or not. In our case (time) interaction terms represent the interaction between our

separation variables and the time dummies and determinate how separation effects have changed

over time. These interaction terms pick up the inter-temporal variation of our separation effect and

remain only cross-sectional variation.
14 Note further that according to Bröcker (1989), we calculate the intraregional distance as

s
ð1Þ
ii ¼ (2/3) (Ai/π)

0.5, where Ai denotes the area of region i, i.e. the intraregional distance is two

third the radius of an presumed circular area.
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j in time period t are direct neighbours, and zero otherwise. s
ð3Þ
ijt is a country border

dummy variable that we use as a proxy for institutional barriers. The variable takes

a value of zero if two regions i and j in time period t are located in the same country,

and one otherwise. s
ð4Þ
ijt is a language dummy variable accounting for cultural barriers

that takes a value of zero if two regions i and j in time period t are located in the

same language area, and one otherwise.15 s
ð5Þ
ijt captures technological distance by

using regional patent data from the European Patent Office (EPO). The application

date is used to extract the data for each year of our time frame. We follow Moreno,

Paci and Usai (2005) and construct a vector for each region i that contains region i’s
share of patenting in each of the technological subclasses of the International Patent

Classification (IPC). Technological proximity between two regions i and j in time

period t is given by the uncentred correlation between their technological vectors.

8.6 Estimation Results

Table 8.2 reports the results from the estimation of the spatially filtered random

effects Negative Binomial spatial interaction models as specified in the previous

section. Standard errors are given in brackets. The first column presents the results

for the FP network, while the second column contains the estimates for the

co-patent network. As can been seen, the estimates for the origin, destination and

separation variables are most often statistically significant. The bottom of the table

presents some model diagnostics that are of methodological interest.16

The results are interesting in the context of the geography of innovation litera-

ture, but also very relevant and insightful from a European STI policy perspective.

Geographical distance, as evidenced by the estimate of β1, exerts in both networks,
the FP network and the co-patent network, a negative effect on collaboration

probability, i.e. in both networks R&D collaboration intensity between two regions

significantly decreases when they are located further away in geographical distance,

and this effect seems only to differ slightly in magnitude. However, concerning

other geographical factors, we find a much stronger negative effect in the co-patent

network than in the FP network. One striking result concerns the high negative

effect of country borders, as evidenced by the estimate for β3, for the co-patent

network as compared to the FP network, showing that for R&D collaborations in

the FPs country borders constitute only a low hurdle.

15 Language areas are defined by the region’s dominant language. However, in most cases the

language areas are combined countries, as for instance Austria, Germany and Switzerland (one

exception is Belgium, where the French speaking regions are separated from the Flemish speaking

regions).
16 The dispersion parameter is statistically significant in both model versions, indicating that the

Negative Binomial specification is essential to account for overdispersion in the data. A likelihood

ratio test which compares the panel estimator with the pooled estimator confirms the appropriate-

ness of the random effects specification.
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In addition, co-patent networks seem to be to a high degree focused on

neighbouring regions, i.e. the collaboration significantly increases when two orga-

nisations are located in regions that share a common border (β2). This effect is much

higher than in the FP network, pointing to a stronger spatial concentration and

geographical localisation of R&D collaborations reflected by co-patents.

Concerning language area effects (β4), we also find considerable differences

between the FP network and the co-patent network. The negative effect of language

is much higher for the co-patent network than for the FP network, i.e. the proba-

bility that organisations located in two different language areas collaborate is much

lower in the co-patent network. This may be explained by the fact that the co-patent

networks are much more subject to the industry sector, where such language

barriers may – as suggested by results provided from Scherngell and Barber

(2011) – constitute a lower hurdle than for research including public research

organisations, in particular universities. Technological distance (β5) is the most

important determinant for cross-region R&D collaborations in both networks, and,

by this, earlier results by Scherngell and Barber (2009, 2011) or Fischer et al. (2006)

are confirmed.

Table 8.2 Estimation results of the spatially filtered random effects negative binomial spatial

interaction models

FP-network Co-patent network

Origin and destination variable [α1] ¼ [α2] 0.955*** (0.001) 0.354*** (0.003)

Geographical distance [β1] �0.209*** (0.005) �0.266*** (0.005)

Neighbouring region [β2] 0.229*** (0.021) 0.710*** (0.017)

Country border effects [β3] �0.063*** (0.016) �1.058*** (0.016)

Language area effects [β4] �0.164*** (0.013) �0.740*** (0.014)

Technological distance [β5] �0.305*** (0.018) �1.536*** (0.023)

Number of significant time effects 7 2

Number of origin spatial filters 32 39

Number of destination spatial filters 29 47

Constant [α0] �9.799*** (0.045) �2.426*** (0.041)

Dispersion parameter 19.804*** (0.253) 2.722*** (0.045)

LR test (spatial filters) 1,335.17*** 4,932.10***

LR test (random effects) 190,354.7*** 30,634.3***

LR test (overdispersion) 281,497.1*** 2,232,645.8***

Log likelihood �879,642.1 �435,630.7

Notes: ***significant at the 0.001 significance level; The LR Test (spatial filter) is a Likelihood

Ratio test that compares the model fit of the spatially filtered model against the unfiltered model

versions. The test statistic is significant for both models. Thus the spatially filtered model

specification is appropriate. The LR Test (random effects) is a Likelihood Ratio test that compares

the panel estimator with the pooled estimator. The significant values confirm the importance of a

random effects specification. The LR Test (overdispersion) is the Likelihood Ratio Test that

compares the random effects negative binomial model to the random effects Poisson specification.

A significant value points to the existence of overdispersion, namely, the negative binomial

specification is to be preferred to the Poisson specification
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However, the effect is much stronger in the co-patent network, which is to be

expected since co-patent networks are more application oriented, where specific

technologies and technological devices are more important. Furthermore, the FPs

are intended to support in particular interdisciplinary knowledge production. Over-

all, in the context of our focus on integration in European R&D, we can infer that

integration is much higher in the FP network than in the co-patent network, as most

of the separation variables exert a higher negative effect. This result has been

expected, since more applied oriented, competitive research is subject to a minor

group of actors often located within one region. The precompetitive character of

knowledge production in the FPs may lead to a higher propensity to share this

knowledge with partners, while patenting is to a larger degree subject to strategic

considerations of the innovating organisation. However, having in mind the ERA

goal of progress towards more integration in European R&D, covering different

phases of R&D, one may conclude that barriers hampering collaborations in the

co-patent network – for instance language barriers or country borders – should be

addressed more thoroughly. This may be done by education programs for over-

coming language barriers or policy initiatives that remove institutional hurdles for

collaborations in patenting, though, one have to be clear that due to the competitive

character of this type of research, such patterns may never fully disappear.

However, in order to be able to gain empirical insight into progress towards

more integration, we need to reflect on time trends. For this reason we look at

interaction terms between selected separation variables and our time dummies.

Table 8.3 presents the results for these interaction terms in the two networks for the

years 2000–2005.

The most striking result is that all separation variables accounting for spatial

effects significantly decline in the FP-network, i.e. the FP network becomes more

geographically integrated over the observed time period. This cannot be observed

for the co-patent network. In particular for the years 2004 and 2005 we cannot

identify a significant interaction effect between time and spatial separation vari-

ables, i.e. progress towards more integration cannot be observed, while this pro-

gress can be clearly observed for the FP network.

8.7 Conclusions

The focus of this study has been on the nature of integration processes in European

R&D. More specifically we have shifted emphasis to the investigation of the

geographical dynamics of two different types of R&D collaboration networks

across Europe, namely co-patent networks and project based R&D networks within

the EU Framework Programmes (FPs). Adopting a spatially filtered panel version

of the Negative Binomial spatial interaction model, we have identified and com-

pared geographical, technological, institutional and cultural effects that influence
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the probability for collaboration activities in the different collaboration networks

over time, and, by this, have provided novel evidence on integration processes in

European R&D.

The most elemental and important result, both in the context of the literature on

the geography of innovation as well as in a European policy context, is that

integration in FP networks seems to be much higher than in the co-patent network.

This is underpinned by the strong intra-national character of the co-patent network

in contrast to the FP network, as well as the higher geographical localisation of

co-patent collaboration activities within narrow geographical boundaries. These

results may on the one hand be explained by the different nature of the knowledge

creation process in the two networks, but also by policy related circumstances, in

that the FP programmes explicitly foster integration processes, and at the same time

more policy efforts should be envisaged that ease collaboration in more applied

oriented research.

Methodologically, the study is interesting as it breaks new ground by estimating

a panel version of the Negative Binomial spatial interaction model accounting for

spatial autocorrelation of flows. Though robustness of the model may be tested

further, the methodological approach seems to be an important contribution to the

debate on spatial autocorrelation issues of flows, applied to a panel data structure

posing additional modelling requirements that have been applied in this study.

Some ideas for future research come to mind. First, the estimation of time

trends, for instance by means of a dynamic version of the spatial interaction

model, is a core subject for future research, requiring both theoretical as well as

computational advancements. Second, the inclusion of other types of R&D

Table 8.3 Time trends for identifying distinct geographical integration patterns in the networks

Time interaction

terms

FP-network

2000 2001 2002 2003 2004 2005

Geographical

distance

�0.057*** �0.042*** �0.039*** �0.033*** �0.010*** �0.003***

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Neighbouring

region

0.171*** 0.130*** 0.089*** 0.088*** 0.029** 0.002

(0.012) (0.011) (0.011) (0.011) (0.010) (0.010)

Country border

effects

�0.083*** �0.073*** �0.074*** �0.060*** �0.018*** �0.000***

(0.006) (0.005) (0.005) (0.005) (0.005) (0.005)

Time interaction

terms

Co-patent network

2000 2001 2002 2003 2004 2005

Geographical

distance

�0.030*** �0.016*** �0.014*** �0.007 �0.006 �0.008

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Neighbouring

region

0.104** 0.057** 0.113*** 0.043 0.003 �0.024

(0.029) (0.029) (0.029) (0.024) (0.028) (0.028)

Country border

effects

�0.087*** �0.059*** �0.065*** �0.064** �0.003 0.018***

(0.023) (0.023) (0.023) (0.023) (0.022) (0.022)
***significant at the 0.001 significance level, **significant at the 0.01 significance level
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networks in the comparative analysis, in particular co-publication networks, is

essential to complement the results provided by the current study.
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Chapter 9

The Community Structure of European R&D

Collaboration

Michael J. Barber and Thomas Scherngell

Abstract We characterize the geography of communities in the European R&D

network using data on R&D projects funded by the fifth European Framework

Programme. Communities are subnetworks whose members are more tightly linked

to one another than to other members of the network. We characterize the commu-

nities by means of spatial interaction models, and estimate the impact of separation

factors on the variation of cross-region collaboration activities in a given commu-

nity at the level of 255 NUTS-2 regions. The results demonstrate that European

R&D networks are made up of distinct, relevant substructures characterized by

spatially heterogeneous community groups.

9.1 Introduction

Today it is widely believed that interaction between firms, universities and research

organizations is crucial for successful innovation in the knowledge-based economy,

in particular in knowledge-intensive industries. This gives rise to the notion of

R&D networks, defined as a set of organizations performing joint R&D, for

instance in the form of collaborative research projects, joint conferences and

workshops, or shared R&D resources in the form of labor and capital (see, for

instance, Powell and Grodal 2005). By acknowledging that R&D networks are

crucial for innovation and that innovation is crucial for sustained economic growth

(see Romer 1990), it is natural that modern STI policies emphasize supporting and

fostering linkages between innovating actors. The principal European example of

such STI policy instruments are the European Framework Programmes (FPs),

which support pre-competitive R&D projects, creating a pan-European network

of actors performing joint R&D.
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Therefore, the investigation of the structure and dynamics of R&D networks is

of great current interest, both in a scientific and in a policy context, and currently

receives much attention in theoretical and empirical research of different scientific

disciplines (see Ozman 2009). Here, we can distinguish between empirical research

focusing on knowledge transfer in formalized joint research activities, as given by

joint R&D projects or joint publications, and empirical studies using networks as

measured by different indicators, such as co-patenting or patent citations, to trace

knowledge flows or knowledge spillovers between organizations, regions, or coun-

tries (see Ejermo and Karlsson 2006).

There are two major approaches taken to analyze R&D networks: a regional

science or geography of innovation perspective and a social network analysis

perspective. In a regional science or geography of innovation context, the investi-

gation of the geographical dimension of R&D collaborations is the central research

objective. This follows from the assumption that geographical space is crucial for

the localization of R&D collaborations and knowledge flows. The pioneering

empirical study of Jaffe et al. (1993) provides evidence for the localization hypoth-

esis of knowledge diffusion processes, in general confirmed by more recent empir-

ical studies using different indicators and new spatial econometric techniques (see,

for instance, Maurseth and Verspagen 2002; Fischer et al. 2006; Maggioni et al.

2007; Hoekman et al. 2009; Scherngell and Barber 2009, 2011). In a social network

analysis context, the focus shifts to the analysis of network structures and dynamics

using the mathematics of graph theory, under the assumption that structural rela-

tions are often more important for understanding observed behaviors than are

attributes of the actors (see, for instance, Zucker and Darby 1998a, b; Singh

2005; Thompson 2006; Vicente et al. 2010). Ter Wal and Boschma (2009) provide

an overview of the increasing importance of social network analysis techniques in

the fields of regional science and economic geography.

In this chapter, we combine the two research traditions by taking a social network

analysis perspective when identifying substructures of European R&D networks

constituted under the FPs, followed by taking a regional science perspective when

analyzing the geographical dimension of identified substructures. In this context,

previous work of and empirical studies by Scherngell and Barber (2009, 2011) are

central starting points for the current study. employ a social network perspective to

analyze R&D collaborations with the objective of unveiling the texture of the

European Research Area (ERA) using data on joint research projects of the fifth

EU Framework Programme (FP), while Scherngell and Barber (2009, 2011) focus on

the geography of R&D collaborations across European regions.

However, results of these previous empirical works may differ across relevant

substructures or communities of the whole FP network. Stated informally, a com-

munity is a subnetwork whose members are more tightly linked to one another than

to other members of the network. A variety of approaches have been taken to

explore this concept (see Fortunato 2010 for a useful review). Since network edges

often indicate relationships of interest, detecting community groups can be used to

partition the network vertices into meaningful sets, enabling quantitative
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investigation of relevant subnetworks. Properties of the subnetworks may differ

from the aggregate properties of the network as a whole, e.g., modules in the World

Wide Web are sets of topically related web pages.

The research approach applied in this chapter is relevant in both a scientific as

well as in a European policy context. It describes a way of looking into R&D

network structures in Europe that combines social network analysis with a geogra-

phy of innovation perspective. As noted by Autant-Bernard (2007), the geograph-

ical dimension of innovation and knowledge diffusion deserves closer attention by

analyzing such phenomena as R&D collaborations. Such analyses are also of

crucial interest for European STI policy, in particular for the integration and

cohesion objective outlined in the concept of the European Research Area

(ERA): improved coherence of the European research landscape and the removal

of barriers to knowledge diffusion in a European system of innovation (see CEC

2007). Of course, insight into the status of integration in different thematic areas is a

particularly valuable new view on this topic.

Further, the analysis provides important policy implications. By lending crucial

insight into real-world topical structures of R&D networks constituted under earlier

FPs, the analysis can inform the design of future FPs. Complementarily, a rich

picture for regional policy actors is provided at the regional level on leading

European regions with respect to cooperative research activities in specific thematic

areas.

The objectives of the current study are: first, to detect communities in European

R&D networks; second, to describe the spatial patterns of the identified communi-

ties; and, third, to identify determinants of the observed spatial patterns. We use

data on joint research projects funded by the European Framework Programmes to

capture European R&D networks. The identification of thematically distinct com-

munities in these networks is realized using graph theoretic techniques described by

Barber and Clark (2009). Further, we employ spatial analysis techniques to identify

and describe spatial patterns of identified FP communities at a regional level. By

means of a Poisson spatial interaction model, we estimate the impact of various

separation factors on cross-region collaboration activities in a given community. In

particular, we focus on how geographical distance impacts cross-region collabora-

tion intensities across different FP communities. The results demonstrate that

European R&D networks are not homogeneous, instead showing distinct, relevant

substructures characterized by thematically homogeneous and spatially heteroge-

neous communities.

9.2 Background and Main Hypotheses

R&D networks inducing knowledge transfer between firms, universities and

research organizations are considered to be crucial for successful innovation in

the knowledge-based economy in general, and in knowledge-intensive industries in

particular. In fact, we face a considerable increase – and we have done so for
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decades – in the number of inter-organizational R&D collaborations (Hagedoorn

and van Kranenburg 2003). The main reasons for this have been alleged to include

the increasing need to access external knowledge – characterized by complemen-

tarity and tacitness – and the high degree of strategic flexibility in collaborative

agreements (Kogut 1988; Teece 1992). Another reason may be the growing com-

plexity of technology and the existence of converging technologies (see Pavitt

2005). In particular, firms have expanded their knowledge bases into a wider

range of technologies (Granstrand 1998), increasing the need for distinct types of

knowledge, so firms must learn how to integrate new knowledge into existing

products or production processes (Cowan 2004). It may be difficult to develop

this knowledge alone or acquire it via the market. The importance of R&D networks

for innovation is also stressed by the various systems of innovation concepts that

focus on interactions between different actors in a specific region, country or sector

(see Lundvall 1992, among others). The main argument is that the sources of

innovation are often distributed between firms, universities, suppliers and cus-

tomers, giving rise to the notion of networks being the locus of innovation.

Networks create incentives for interactive organizational learning, leading to faster

knowledge diffusion within the innovation system and stimulating the creation of

new knowledge or new combinations of existing knowledge.

The EU follows this view in its science and technology policy, mainly reflected

in the concept of the European Research Area (ERA), whose aim is to improve

coherence of the European research landscape and remove barriers for knowledge

diffusion in a European system of innovation (see CEC 2007). The cornerstone of

corresponding EU policy instruments is formed by the Framework Programmes

(FPs) on Research and Technological Development. By means of this policy

initiative, the EU has co-funded thousands of trans-national collaborative R&D

projects. The main objectives of the instrument from a European technology policy

view are to integrate national and regional research communities and to coordinate

national research policies. Empirical studies such as the one of provide evidence for

the establishment of a pan-European network of firms, universities, public research

organizations, consultants and government institutions performing joint research

funded by the FPs (see Roediger-Schluga and Barber 2006 for a comprehensive

discussion of the EU FPs).

Previous empirical studies usually focused on complete FPs to describe net-

works of European R&D cooperation as captured by data on joint FP projects.

However, empirical results of these studies may differ across relevant, thematically

distinct community groups of the whole FP networks, and these differences may be

of crucial interest in a European policy context. Stated informally, a community is a

portion of the network whose members are more tightly linked to one another than

to other members of the network. Precise formulation of the problem presents two

main challenges. First, the notion of communities is somewhat vague, requiring a

definition to be provided for what formally constitutes a community. Second, it

must be possible to identify community solutions for networks of real-world

scientific or policy interest given limitations on time and computational resources.

The interplay between these challenges allows a variety of community definitions

154 M.J. Barber and T. Scherngell



and community identification algorithms suited to networks of different sizes (for

useful overviews, see Fortunato and Castellano 2008; Fortunato 2010; Porter

et al. 2009).

Meaningful communities have been identified in many networks of diverse

character, corresponding to specialized research areas in co-authorship networks,

topically related pages on the World Wide Web, and functional modules in cellular

or genetic networks, amongst many others. Following the pioneering work of

Girvan and Newman (2002) and Newman and Girvan (2004), many researchers,

particularly in statistical physics, have investigated methods for detecting commu-

nities in large networks. Similarly, we hypothesize first that the European FP

network consists of relevant, thematically distinct subnetworks that show distinct

thematic and spatial characteristics.

Second, we hypothesize that geographic localization effects of knowledge flows

are significantly smaller within identified communities than for the whole FP5

network, since the transfer of tacit knowledge may be easier in thematically

relatively homogenous community groups. As mentioned above, the geography

of innovation literature argues that knowledge flows among knowledge producing

agents may be geographically bounded, since important parts of new knowledge

have some degree of tacitness. Though the cost of transmitting codified knowledge

may be invariant to distance, presumably the cost of transmitting non-codified

knowledge across geographic space rises with geographic distance (see Jaffe

et al. 1993; Audretsch and Feldman 1996). Scherngell and Barber (2009) provide

evidence for the geographical localization of FP5 networks. In this study, we

anticipate that localization effects decrease for an identified, thematically homog-

enous community. Due to a more homogeneous thematic focus of a community, the

transfer of non-codified knowledge may not be as costly as would be the case for

thematically more dispersed actors.

9.3 Empirical Setting and Data

Our core data set to capture collaborative activities in Europe is the EUPRO

database, which presently comprises data on funded research projects of the EU

FPs (complete for FP1-FP6) and all participating organizations. It contains system-

atic information on the participating organizations including the full name, the full

address, the type of the organization, and, where appropriate and possible, the

organizational subentity involved in the project. For a full description of the

EUPRO database and its contents, see Roediger-Schluga and Barber (2008).1

1 The version of the EUPRO database used for this study contains information on 61,169 projects

funded from FP1 to FP6, yielding 323,638 participations by 60.034 organizations (status:

December 2010).
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9.3.1 Constructing FP5 Research Networks

The study at hand draws on information concerning joint R&D projects funded in

FP5.2 We selected FP5 as it has the greatest number of projects and, at the time of

the computations, the greatest processing of organizational data. Other FPs also

show strong community structure (Barber et al. 2008).

Using the EUPRO database, we construct a graph or network containing the

collaborative projects from FP5 and all organizations that are participants in those

projects; no other forms of collaboration (e.g., co-publication or co-patents) are

used here. An organization is linked to a project if and only if the organization is a

member of the project. Since an edge never exists between two organizations or two

projects, the network is bipartite. The network edges are unweighted; in principle,

the edges could be assigned weights to reflect the strength of the participation, but

the data needed to assign such network weights is not available.

Previous investigations of the FPs often have made use of one-mode networks

(Almendral et al. 2007; Barber et al. 2006; Roediger-Schluga and Barber 2008),

typically by (possibly implicitly) projecting the bipartite network onto a network of

organizations that are linked based on co-participation in projects. While the one-

mode networks can be useful, their construction discards information available in

the bipartite networks, which can lead to incorrect community structures (Guimerà

et al. 2007). In the present work, we thus focus exclusively on representation of FP5

as a bipartite network.

9.3.2 Detecting Communities in European Collaboration
Networks

Community identification in networks is the assignment of the network vertices to a

smaller number of clusters. These clusters are hopefully relevant, and thus, drawing

on the context of social networks, called communities. Recent community identi-

fication methods are based on analyzing the network structure, identifying com-

munities as groups of vertices that are internally strongly connected but only

weakly connected to the rest of the network. In empirical networks, vertices within

communities are often found to be usefully related by content: edges reflect

underlying processes relevant to the entities corresponding to vertices, so commu-

nities consist of entities with similar properties.

Community identification methods have been developed that are efficient

enough to be suitable for large networks containing thousands or millions of

vertices and edges. One such method is the label propagation algorithm (LPA) of

Raghavan et al. (2007). Each vertex is assigned a label; a community is the set of all

2 FP5 had a total budget of 13.7 billion EUR and ran from 1998 to 2002 (CORDIS 1998). See

Scherngell and Barber (2009) and CORDIS (1998) for further details on FP5.
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vertices with a particular label. The vertices are initialized with distinct labels, thus

beginning with all vertices in distinct communities. Vertices are repeatedly

updated, replacing their labels with ones that better match the labels of their

neighbors. Within tightly interlinked subnetworks, common labels reinforce one

another, encouraging uniform labels to be adopted. In contrast, weak linking

between tightly interlinked subnetworks means that relatively few neighbors will

differ in labels, hindering the propagation of labels between the subnetworks. These

two properties accord with the above idea of community, so the LPA proves to be

quite effective in practice (Leung et al. 2009).

Two properties of community solutions found by LPA warrant comment. First,
since each vertex has a single label, the communities are disjoint; no vertex belongs

to two communities. Second, community solutions are not generally unique; more

than one label may be satisfactory for a vertex. Both of these properties suggest that

some portion of the vertices may fit well in more than one community, so some care

should be taken in interpreting specific community memberships. In this work, we

consider statistical properties of the communities, which are more robust against

reassignment of a few labels.

In determining the communities, we make use of modest extensions to the LPA

(Barber and Clark 2009). The specifics of the algorithms are detailed in Appendix 3.

Since we investigate bipartite networks, the communities will include vertices from

the two parts of the network, i.e. communities will contain both projects and

organizations.

9.3.3 Observing Spatial Collaboration Patterns
of Communities Across European Regions

To analyze the spatial patterns of the identified communities we first geocode each

organization to a specific European region. We use a concordance scheme provided

by Eurostat between postal codes and NUTS regions to trace the specific NUTS-2

region of an organization. The European coverage is achieved by using 255 NUTS-

2 regions (NUTS revision 2003) drawn from the 25 pre-2007 EU member-states,

Norway and Switzerland. The detailed list of regions is given in Appendix 1.3 Next

we construct a region-by-region collaboration matrix P(c) for each community c,
aggregating collaborative activities at the organizational level to the regional level,

giving the observed number of R&D collaborations p
ðcÞ
ij between two regions i and

j (i, j, ¼ 1, . . ., n) for each community c.

3We follow previous similar empirical work and rely on a NUTS2 disaggregation of the European

territory (see Fischer et al. 2006; LeSage et al. 2007; Scherngell and Barber 2009, 2011). The

NUTS2 level provides the basis for the provision of structural funds by the EU, as well as for the

evaluation of regional growth processes across Europe (see Fischer et al. 2009).
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Following Scherngell and Barber (2009), we use a full counting method. For a

project with three participating organizations in three different regions – say

regions a, b, and c – we count three links: from region a to region b, from b to

c and from a to c. When all three participants are located in one region we count

three intraregional links. We exclude self loops to eliminate spurious self collabo-

rations. The resulting regional collaboration matrix P(c) then contains the collabo-

ration intensities p
ðcÞ
ij between all (i, j)-region pairs for community c. The n-by-n

matrix for each community is symmetric by construction ( p
ðcÞ
ij ¼ p

ðcÞ
ji ).

9.4 Community Structure in European R&D Networks

Using the label propagation approach described in the previous section, we

partitioned the network into 3,482 communities. The communities vary greatly in

size, as measured either by the number of organizations in the community or by the

number of projects in the community. Most (2,878) communities are small,

consisting of just a single project with some or all of the organizations participating

in it; these offer little insight into collaboration patterns. In contrast, nine commu-

nities are large, containing 20 or more projects; these communities contain over a

third of the organizations and over half of the projects present in FP5. Here, we

consider the eight of these nine largest communities that are concerned with R&D;

the ninth is of different character than the others, focusing instead on international

cooperation. We do not further consider the smaller communities here, preferring

instead to investigate the large communities in greater detail.

Table 9.1 shows the sizes of the identified communities. We manually assign

names to the communities based on consideration of their constituent projects and

organizations.

The largest community (2,366 organizations), Life Sciences, shows a broad

selection of topics in biotechnology and the life sciences, including health, medi-

cine, food, molecular biology, genetics, ecology, biochemistry, and epidemiology.

The second largest (2,307 organizations), Electronics, focuses principally on infor-
mation technology and electronics, with projects in related fields dealing with

materials science, often related to integrated circuits; projects on algorithms, data

mining, and mathematics; and a definite subset of projects concerning atomic,

molecular, nuclear, and solid state physics. The third largest community (1,855

organizations), Environment, is focused on environment topics, including environ-

mental impact, environmental monitoring, environmental protection, and

sustainability.

As communities become smaller, they also become more focused. We see, for

example, three distinct transportation related communities. The largest of these

(1,146 organizations), Aerospace, is focused on aerospace, aeronautics and related

topics, including materials science, manufacturing, fluid mechanics, and various

energy topics. The next (686 organizations), Ground Transport, is focused on land
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transport, with the projects dominated by railroad and, especially, automotive

topics; notable subtopics include manufacturing, fuel systems, concrete, and pol-

lution. The smallest transportation community (218 organizations), Sea Transport,
focuses specifically on sea transport; virtually all project titles are shipping-related.

The remaining communities, Aquatic Resources and Information Processing, are
the smallest and most uniform thematically. Their thematic contents are fisheries

and statistics.

Figure 9.1 visualizes the network of key FP5 communities. We determine the

position for the communities using methods from spectral graph analysis, so that

communities that are strongly interconnected are positioned nearer to each other

(for a practical overview see Higham and Kibble 2004). The node size corresponds

to the number of organizations of the respective community, with the widths of the

connection links corresponding to the number of inter-community project

participations.

Due to the strong inter-community links, the Electronics community appears to

have the highest collaboration intensity with other communities, i.e. competences

relevant to this field are used intensively in other fields. The Life Sciences commu-

nity shows a strong connection to the third largest community, Environment. The
three transport-related communities are positioned near one another, i.e. they show

relatively high inter-community collaboration intensity. The largest of these is

Aerospace, and shows a stronger interaction with Ground Transport than with

Sea Transport. The community Aquatic Resources has the strongest connection to

Environment, while Information Processing shows comparably low collaboration

intensities to all other communities.

Table 9.1 Sizes of FP5 communities

Community Number of organizations Number of projects

FP5 25,839 9,490

Aerospace 1,146 576

Aquatic resources 81 69

Electronics 2,307 1,447

Enviroment 1,855 971

Ground transport 686 374

Information processing 40 20

Life sciences 2,366 1,468

Sea transport 218 73
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9.5 Spatial Structure of Communities in European R&D

Networks

We next consider the spatial distribution of the eight FP5 communities. In Fig. 9.2,

we illustrate the spatial networks of the communities by aggregating individual

observations on the organizations of a community to the regional level. Note that

the region-by-region networks are undirected graphs from a network analysis

perspective. The nodes represent regions; their size is relative to the number of

organizations in the region that belong to the community.

The spatial network maps in Fig. 9.2 reveal considerable differences among the

collaboration patterns of the eight FP5 communities. One immediate result is that

the region Île-de-France takes an important position in all communities. Further-

more, the visualization clearly reveals the different spatial patterns of the transport-

related communities, Aerospace, Ground Transport, and Sea Transport. Though
the region Île-de-France appears to be the central hub in the three transport related

communities, the directions of the highest collaboration flows from Île-de-France

differ markedly. For the Sea Transport community we observe intensive collabo-

rations to important sea ports in the north (Zuid Holland, Agder og Rogaland,

Danmark, Hamburg) and the south (Liguria, Lisboa, Attiki), while, for the Ground
Transport community, collaborations to the east and south are dominant (Lombar-

dia, Oberbayern, Stuttgart).

In the Aerospace community we can observe a strong localization of collabora-

tions within France and its neighboring countries. In the largest community, Life
Sciences, the highest number of collaborations is observed between the regions of

Île-de-France and Piemonte (174), while the second largest community,

Sea Transport

Environment

Life Sciences

Aquatic Resources

Ground Transport

Information Processing

Aerospace

Electronics

Fig. 9.1 Community groups in the network of FP5 R&D cooperation
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Fig. 9.2 Spatial patterns of eight FP5 communities
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Electronics, is characterized by a very high collaboration intensity between the

regions of Île-de-France and Oberbayern (474 collaborations), followed by Île-de-

France and Köln (265 collaborations), and Oberbayern and Köln (157 collabora-

tions). In the Environment community we find the strongest collaboration intensity

between Danmark and Etelä-Suomi (131 collaborations). In the community Aquatic
Resources the regions Danmark and Agder og Rogaland (Norway) show the highest

collaboration intensity, not only between them (21 collaborations) but also to other

regions, while for the community Information Processing we identify Etelä-Suomi

as the central region, featuring intensive collaboration with Attiki, Lazio and

Lombardia.

To complement the maps shown in Fig. 9.2, the numbers of project participa-

tions by organizations in each region for each community are also of interest; we

tabulate the most active participants in Appendix 2. This provides insight into

which regions are most active for each community, in contrast to which regions

are best connected, as described above. Interestingly, well connected regions may

markedly differ from the most active regions.

9.6 Identifying Determinants of Spatial Community

Patterns

Our objective in this paper is not only to detect communities in European FP

networks and describe their spatial configurations, but also to investigate determi-

nants that influence the spatial community patterns. In particular, whether the

influence of geographical distance differs across communities is of crucial impor-

tance in the context of an aspired European Research Area. Thus, we measure

separation effects on the constitution of cross-region R&D collaborations in all

detected communities. The spatial interaction model of the type used by Scherngell

and Barber (2009, 2011) in a similar context serves again as an appropriate basis.

Spatial interaction models incorporate a function characterizing the origin i of
interaction, a function characterizing the destination j of interaction and a function

characterizing the separation between two regions i and j. The model is character-

ized by a formal distinction implicit in the definitions of origin and destination

functions on the one hand, and separation functions on the other (see, for example,

Sen and Smith 1995). Origin and destination functions are described using

weighted origin and destination variables, respectively, while the separation func-

tions are postulated to be explicit functions of numerical separation variables. The

general model in our case is given by

P
cð Þ
ij ¼ Ai Bj Sij i, j ¼ 1, . . . , n ð9:1Þ

with
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Ai ¼ A ai; α1ð Þ ¼ aα1i i, j ¼ 1, . . . , n ð9:2Þ
Bj ¼ B bj; α2

� � ¼ bα2j i, j ¼ 1, . . . , n ð9:3Þ

Sij ¼ exp
XK

k¼1

βk d
kð Þ
ij

" #
i, j ¼ 1, . . . , n ð9:4Þ

where P
ðcÞ
ij denotes a stochastic dependent variable that is realized by the number of

observed collaboration flows p
ðcÞ
ij between region i and region j for each community

c.4 Ai denotes the origin function, Bj denotes the destination function, while Sij
represents a separation function. The ai and bj are measured in terms of the number
of organizations participating in EU FP5 projects in the regions i and j, while α1 and
α2 are scalar parameters to be estimated. Note that due to the symmetry of the origin
and destination variables, we have a special case with α1 ¼ α2, i.e. numerical

results for α1 and α2 should be equal up to numerical precision. The d
ðkÞ
ij are

K separation measures, the βk are corresponding parameters to be estimated that
will show the relative strengths of the separation measures. We rely on separation
measures used in similar studies (see, for instance, Fischer et al. 2006; Scherngell
and Barber 2009). We can group these separation variables into three categories:

(i) Variables accounting for spatial effects: d
ð1Þ
ij denotes geographical distance

between two regions i and j as measured by the great circle distance between

the economic centers of the regions, while d
ð2Þ
ij is a dummy variable that

controls for neighboring region effects. We set d
ð2Þ
ij to one if two organizations

are located in neighboring regions and zero otherwise, where neighboring
regions are defined to share a common border.

(ii) Variables accounting for institutional and cultural effects: d
ð3Þ
ij is a country

border dummy variable that takes a value of zero if two regions i and j are

located in the same country and one otherwise, while d
ð4Þ
ij is a language area

dummy variable that takes a value of zero if two regions i and j are located in
the same language area and one otherwise.

(iii) Variables accounting for technological effects: d
ð5Þ
ij measures technological

distance by using regional patent data from the European Patent office (EPO).
The variable is constructed (see Scherngell and Barber 2009) as a vector ti
that measures region i’s share of patenting in each of the technological sub-
classes of the International Patent Classification (IPC). Technological sub-
classes correspond to the third-digit level of the IPC systems. We use the
Pearson correlation coefficient between the technological vectors of two
regions i and j to define how close they are to each other in technological
space. Though we focus on spatial, cultural and institutional effects in this
study, we include technological distance, mainly as a control variable to allow

for the possibility that geographical distance may just be a proxy for techno-

logical distance.

4 Note that we do not exclude zero-flows or intraregional flows.
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At this point, we are interested in estimating the parameters α1 ¼ α2 and βk for
each community c. OLS estimation procedures are not appropriate for modeling

research collaborations, due to their true integer nature and due to the assumption of

non-normal errors. This suggests a Negative Binomial density distribution, i.e. a

Poisson specification with heterogeneity, allowing for the overdispersion often

observed for real world count data (see Cameron and Trivedi 1998). The Negative

Binomial density distribution in our case is given by

f P
cð Þ
ij

� �
¼

Γ p
cð Þ
ij þ δ�1

� �

Γ p
cð Þ
ij þ 1

� �
Γ δ�1
� �

δ�1

Ai Bj Sij þ δ�1

 !δ�1

Ai Bj Sij

Ai Bj Sij þ δ�1

 !p
cð Þ
ij

ð9:5Þ

Here, Γ(�) denotes the gamma function and δ is the dispersion parameter. Model

estimation is done by Maximum Likelihood procedures (see Long and Freese

2001).

Table 9.2 presents the sample estimates of the spatial interaction models, with

standard errors given in brackets. We use the Negative Binomial model specifica-

tion as given by Eq. 9.5. The dispersion parameter δ is significant for all model

versions, indicating that the Negative Binomial version is the right specification, i.

e. the standard Poisson specification would be biased due to unobserved heteroge-

neity between the region pairs (see Scherngell and Barber 2009). The existence of

unobserved heterogeneity that cannot be captured by the covariates leads to

overdispersion and, thus, to biased model parameters for the standard Poisson

model.

The models produce quite interesting results in the context of the literature on

European R&D networks on the one hand, and in the context of the literature on the

geographic localization of knowledge flows on the other hand. The second column

contains, for the purpose of comparison, the sample estimates for total FP5. The

main conclusion of this model is that geographical distance between two organi-

zations has a significant negative effect on the likelihood that they collaborate.

However, technological distance between regions shows a larger negative effect on

cross-region collaborative activities.

The impact of the different separation effects varies considerably across

observed FP5 communities, both with respect to the magnitude of the estimates

and to statistical significance. The most important result is that the negative effect

of geographical distance is significantly weaker in any given FP5 community than

for all FP5 collaborations taken as a whole. This indicates that geographical

integration in European research is better developed in thematically more homog-

enous communities than between communities. In the Aquatic Resources commu-

nity, the Sea Transport community and the Information Processing community, the

effect of geographical distance is even insignificant – within these communities

there is no observable effect of geographical distance on the probability of
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collaboration between two organizations in Europe. The highest negative effect of

geographical distance within a community is identified for the Ground Transport
community (β1 ¼ �0.224).

While geographical distance effects are generally lower for the communities

than for all FP5 collaborations, the neighboring region effects are more variable.

Neighboring regions effects cannot be identified for most communities, with the

exception of the Environment community and the Aerospace community, which are

subject to stronger neighboring region effects than the average of all FP5 collabo-

rations, i.e. there is considerable significant spatial clustering of research collabo-

rations in these communities at the regional level. Also institutional and cultural

effects vary considerably across communities. The modeling results point to the

existence of institutional barriers at the national level for collaboration in the

Aquatic Resources community, the Electronics community, the Sea Transport
community, and the Aerospace community, even though FP5 as a whole shows

no such barriers. Language area effects are generally lower or insignificant, but the

Aquatic Resources community and the Information Processing community are

characterized by quite high negative language area effects, i.e. collaboration prob-

ability significantly decreases between organizations located in different language

areas.

Concerning technological distance, we find that, in each community, the nega-

tive effect of technological distance is higher than for the whole FP network, except

for Ground Transport; the collaboration probability with ‘technologically distant’

regions in a thematically homogenous community is lower than the average col-

laboration probability in FP5. For the outlier Ground Transport, one may speculate

that the thematic area uses rather mature and/or widely used technologies prevalent

in all regions, leading to a lower negative effect of technological distance. Addi-

tional background information on the composition and configuration of the com-

munities would be needed for further interpretations of the sample estimates. Most

importantly, the results demonstrate that separation effects for collaboration depend

on the FP communities; this may provide a starting point for further research, in

particular concerning the interpretation of the parameter estimates.

9.7 Conclusion

Using data on joint research projects funded by FP5, we have in this chapter

analyzed European R&D collaborations, investigating the hypotheses (1) that the

collaborative network consists of communities with distinct thematic and spatial

characteristics and (2) that geographical localization effects of knowledge flows are

smaller in these communities that for the network as a whole. We have used

techniques described by Barber and Clark (2009) to identify network communities,

subnetworks whose members are more tightly linked to one another than to other

members of the network. The determinants of the spatial patterns in eight of the

largest identified communities are examined by means of Negative Binomial spatial
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interaction models, estimating how various separation factors – such as geograph-

ical distance – affect the variation of cross-region collaboration activities in a given

community.

The results of the analysis are supportive of our hypotheses and of interest both

from a scientific point of view and in a European policy context. First, we detected

relevant, thematically relatively homogenous FP5 communities, providing a new

view on the R&D collaboration landscape in Europe. The largest communities

identified are Life Sciences, Electronics, and Environment; these may contain

further substructures of equal relevance. As communities become smaller, they

also become more focused. We identified three transport-related communities:

Aerospace, Ground Transport, and Sea Transport. The remaining communities,

Aquatic Resources and Information Processing, are the smallest and most uniform

thematically of those we have considered. Second, the spatial analysis of the large

communities clearly reveals that the spatial configuration varies across communi-

ties. However, the region of Île-de-France plays a central role in each of the large

communities. Third, the estimation results of the spatial interaction model show

that the spatial integration of collaboration activities within the analyzed commu-

nities is more developed than for FP5 collaborations as a whole. The negative

impact of geographical distance on the probability that two organizations collabo-

rate is much lower when these organizations belong to the same community, while

the negative impact of technological differences is generally more pronounced.

From a policy perspective, the identification and characterization of the spatial

patterns of these thematically relevant substructures is of crucial interest. First, our

analysis may serve as a starting point for analyzing the empirical thematic land-

scape of European R&D collaboration, which is of strategic interest for the design

of future European policy programs supporting collaborative R&D, in particular

concerning the orientation of thematic foci. Second, the simple but essential spatial

characterization of the large communities may serve as an important source of

information for regional and national policy makers to identity their main peers for

benchmarking exercises or stimulation of specific collaborations; this is tabulated in

Appendix 2. Third, in the context of the European policy goal of an integrated and

coherent research area, the results indicate that the degree and evolution of inte-

gration may differ across technological areas and that specific technological char-

acteristics should be considered when assessing progress towards that goal.

The study suggests several directions for future research. First, the interpretation

of the spatial configuration of the largest identified communities was confined to the

descriptive level, as in-depth interpretations of the different separation effects

would require further background information about the actors involved in a

specific community. Further work could focus on interpretation of separation

effects, building on the results presented here. Second, the (spatial) evolution of

the detected communities over time could be investigated, providing a deeper

understanding on the dynamics of community formation and their spatial integra-

tion in the European R&D collaboration landscape. Third, while we have focused

on large communities that cover the majority of the projects, there are thousands of

smaller communities that we have not considered. Thus, strategies for analyzing
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these smaller communities could be explored, as could policy implications such as

how to encourage integration of the small communities into the larger ones. Finally,

alternative community identification methods could be used, for example to con-

sider overlapping or hierarchical communities, accounting for the subthemes rec-

ognized in the larger communities.
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Appendix 1

NUTS is an acronym of the French for the “nomenclature of territorial units for

statistics”, which is a hierarchical system of regions used by the statistical office of

the European Community for the production of regional statistics. At the top of the

hierarchy are NUTS-0 regions (countries) below which are NUTS-1 regions and

then NUTS-2 regions. This study disaggregates Europe’s territory into 255 NUTS-2

regions located in the EU-25 member states (except Cyprus and Malta) plus

Norway and Switzerland. We exclude the Spanish North African territories of

Ceuta y Melilla, the Portuguese non-continental territories Azores and Madeira,

and the French Departments d’Outre-Mer Guadeloupe, Martinique, French

Guayana and Reunion.

Appendix 2

We list here the most active regions for the eight communities considered in depth

in this paper. For each community, we give the 20 regions with the highest number

of participations in projects from the community. The number of participations is

shown parenthetically. Regions are given in descending order of the number of

participations.

Aerospace: Île de France (1232), Comunidad de Madrid (691), Oberbayern (581), Dan-

mark (526), Noord-Holland (440), Köln (365), Attiki (320), Inner London

(306), Lombardia (285), Greater Manchester (276), Bedfordshire &

Hertfordshire (271), Etelä-Suomi (269), Campania (266), Midi-Pyrénées

(248), Dytiki Ellada (247), Outer London (243), Lazio (241), Liguria

(239), Hampshire & Isle of Wight (225), Paı́s Vasco (224)

Aquatic
Resources:

Agder og Rogaland (97), North Eastern Scotland (93), Danmark (91),

Comunidad de Madrid (73), Flevoland (67), Noord-Holland (67), Ham-

burg (57), Algarve (55), Kriti (49), Attiki (47), Northern Ireland (39),

Southern and Eastern (38), East Anglia (31), Andalucı́a (26), Paı́s Vasco

(25), Galicia (24), Prov. West-Vlaanderen (22), Etelä-Suomi (21), East-

ern Scotland (18), Vestlandet (17)

(continued)

168 M.J. Barber and T. Scherngell



Electronics: Île de France (3537), Oberbayern (1390), Attiki (1182), Rhône-Alpes (1012),

Comunidad de Madrid (863), Köln (831), Lombardia (768), Lazio (728),

Zuid-Holland (578), Danmark (563), Berkshire, Buckinghamshire &

Oxfordshire (559), Berlin (540), Région lémanique (531), Noord-Brabant

(523), Inner London (519), Cataluña (509), Prov. Vlaams-Brabant (483),

Southern and Eastern (471), Stuttgart (433), Outer London (430)

Environment: Île de France (1020), Danmark (782), Aττικη�/ Attiki (627), Etelä-Suomi

(580), Lazio (565), Zuid-Holland (526), Noord-Holland (479),

Comunidad de Madrid (426), East Anglia (414), Lombardia (395),

Southern and Eastern (378), Cataluña (373), Stockholm (357), Gelderland

(355), Wien (350), Andalucı́a (326), Utrecht (306), Karlsruhe (305),

Agder og Rogaland (295), Hampshire & Isle of Wight (294)

Ground Transport: Île de France (846), Stuttgart (698), Piemonte (587), Köln (385), Zuid-

Holland (346), Lombardia (323), Oberbayern (293), Västsverige (290),

Etelä-Suomi (226), Berkshire, Buckinghamshire & Oxfordshire (218),

Kentriki Makedonia (200), Lazio (177), Hannover (175), Paı́s Vasco

(168), Comunidad de Madrid (144), Steiermark (141), Noord-Holland

(127), Prov. Vlaams-Brabant (123), Rhône-Alpes (119), Darmstadt (118)

Information
Processing:

Eastern Scotland (40), Lombardia (21), Etelä-Suomi (20), Lazio (18), Zuid-

Holland (16), Hampshire & Isle of Wight (14), Île de France (12), Attiki

(11), Outer London (11), Stockholm (10), Sør-Østlandet (10), Danmark

(7), Darmstadt (7), Southern and Eastern (7), Noord-Holland (5),

Comunidad de Madrid (4), Essex (4), Limburg (NL) (4), Luxembourg

(Grand-Duché) (4), Espace Mittelland (3)

Life Sciences: Île de France (1860), Danmark (1055), Gelderland (843), Outer London

(703), Lombardia (658), East Anglia (637), Comunidad de Madrid (636),

Inner London (605), Cataluña (569), Zuid-Holland (547), Utrecht (538),

Lazio (529), Stockholm (521), Karlsruhe (519), Prov. Vlaams-Brabant

(495), Rhône-Alpes (494), Southern and Eastern (481), Oberbayern

(458), Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest

(442), Eastern Scotland (396)

Sea Transport: Danmark (190), Liguria (144), Hamburg (137), Île de France (135), Outer

London (115), South Western Scotland (105), Agder og Rogaland (99),

Zuid-Holland (88), Attiki (76), Pays de la Loire (61), Bremen (58),

Surrey, East & West Sussex (48), Västsverige (43), Comunidad de

Madrid (40), Etelä-Suomi (36), Friuli-Venezia Giulia (35), Gelderland

(35), Hampshire & Isle of Wight (33), Trøndelag (32), Région de Bru-

xelles-Capitale/Brussels Hoofdstedelijk Gewest (30)

Appendix 3

Raghavan et al. (2007) proposed a label propagation algorithm (LPA) for identify-

ing communities in networks. Community membership is tracked by labels

assigned to the graph vertices; a community is a set of all vertices with a particular

label. Each vertex is assigned a single label, and thus belongs to a single

community.
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Call a label satisfactory for a vertex when no other label occurs more frequently

among its neighbors. The core of the LPA is a process of replacing unsatisfactory

labels with satisfactory ones, continuing until all vertices have satisfactory labels.

This idea is illustrated in Fig. 9.3 using a toy network with visually apparent

community structure. In Fig. 9.3a, there are three different labels, shown by the

vertex shading. The black and white labels are all satisfactory for their vertices. Of

the three gray labels, two are unsatisfactory for their vertices, shown by double

borders on the vertices: one neighbors a single gray vertex and two black vertices,

the other neighbors a single gray vertex and three white vertices. The third gray

label is satisfactory: the vertex neighbors two gray vertices and two black vertices.

In Fig. 9.3b, all vertices have satisfactory labels.

The algorithm begins from a state where all vertices have different labels (and

thus are generally all unsatisfactory). Taken in random order, the vertices are

considered to see whether their labels are satisfactory and updated to be satisfactory

when not; if multiple labels would be satisfactory, one is chosen at random. For the

example network shown in Fig. 9.3a, the two vertices with gray labels must then be

updated, one to have a black label, the other to have a white label; note that

changing these two gray labels will cause the third gray label to become unsatis-

factory. Multiple relabeling passes are made through the vertices, with the algo-

rithm halting when all vertices have a satisfactory label, such as in Fig. 9.3b.

The LPA offers a number of desirable qualities. As described above, it is

conceptually simple, being readily understood and quickly implemented. The

algorithm is efficient in practice. Each relabeling iteration through the vertices

has a computational complexity linear in the number of edges in the graph. The total

number of iterations is not a priori clear, but relatively few iterations are needed to

assign the final label to most of the vertices (typically over 95 % of vertices in

5 iterations, see Raghavan et al. 2007; Leung et al. 2009).

The LPA defines communities procedurally, rather than as optimization of an

objective function, and thus provides no intrinsic measure for the quality of

communities found. To assess community quality, we can introduce an auxiliary

measure, such as the popular modularity measure (Newman and Girvan 2004); in

Fig. 9.3 Community

identification with label

propagation
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this work, more suitable is a version of modularity specialized to bipartite networks

(Barber 2007). Using modularity, communities found using LPA are seen to be of

high quality (Raghavan et al. 2007): label propagation is both fast and effective.

Indeed, Leung et al. (2009) have proposed extensions to the label propagation

algorithm that make it comparable to the best algorithms for community detection

in quality and efficient enough to analyze very large networks.

Barber and Clark (2009) have elucidated the connection between label propa-

gation and modularity, showing that modularity can be maximized by propagating

labels subject to additional constraints and proposing several variations of the LPA.

In this paper, we make use of a hybrid, two-stage label propagation scheme,

consisting of the LPAr variant followed by the LPAb variant (see Barber and

Clark 2009 for details). LPAr is defined similarly to the original LPA presented

above, but with additional randomness to allow the algorithm to avoid premature

termination. In practice, this produces better communities as measured by modu-

larity than does LPA. LPAb imposes constraints on the label propagation so that the

algorithm identifies a local maximum in the bipartite modularity. The overall

hybrid algorithm thus belongs to the recent class of algorithms based on modularity

maximization (for a survey, see Fortunato 2010).
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Chapter 10

Determinants of International R&D

Activities: Evidence from a Gravity Model

Sandra Leitner, Robert Stehrer, and Bernhard M. Dachs

Abstract Firms not only produce or sell their products and services abroad, but

increasingly also conduct research and development (R&D) at locations outside

their home countries – a phenomenon referred to as the ‘internationalization of

business R&D’. This chapter analyses the internationalization of business R&D for

OECD countries and identifies specific home and host country characteristics that

are conducive or obstructive to R&D expenditure of foreign affiliates. The analysis

employs a recently compiled novel data set on R&D expenditure of foreign-owned

firms in the manufacturing sectors of a set of OECD countries. The results point to

the pivotal role of market size and of cultural, physical and technological proximity

for R&D efforts of foreign-owned firms. Moreover, the analysis demonstrates that

sufficient human capital and strong indigenous technological capabilities in the host

country tend to be conducive to R&D activities of foreign affiliates. In contrast, a

rich human capital base in the home country is obstructive to the process of R&D

internationalization. Geographic distance turns out to be a strong deterrent.

10.1 Introduction

Firms not only produce or sell their products and services abroad, but increasingly

also conduct research and development (R&D) at locations outside their home

countries – a phenomenon referred to as the ‘internationalization of business

R&D’ (Narula and Zanfei 2005; OECD 2008b; Hall 2010).

The internationalization of business R&D is more of a recent phenomenon. The

international economics as well as the international business literature long
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regarded R&D and the accumulation of knowledge as activities that are bound to

the home countries of multinational firms. In their seminal paper on R&D in large

multinational enterprises, Patel and Pavitt (1991, p. 17) concluded that the produc-

tion of technology remained ‘far from globalized’, but was concentrated in the

home countries. Hence in the 1990s, R&D was still ‘an important case of

non-globalization’ (Patel and Pavitt 1991, p. 17). Theories of the multinational

firm following Hymer’s (1976 [1960]) seminal contribution stress that the interna-

tional expansion of R&D is a means to exploit existing intangible assets and

knowledge capital of the firm in foreign markets (Dunning 1988; Markusen 2002;

Helpman 2006; Forsgren 2008).

However, during the last two decades, the internationalization of business R&D

activities has accelerated strikingly. Specifically, as highlighted by the OECD

(2008a), between 1995 and 2003, R&D expenditure of foreign affiliates increased

twice as rapidly as their turnover or their host countries’ aggregate imports. This

renders R&D activities of foreign affiliates one of the most dynamic elements of the

process of globalization. Until recently, the main actors and recipients of cross-

border R&D expenditure were developed countries. Lately, some new players

emerged, giving rise to new patterns of R&D internationalization. Especially in

Asia, emerging economies gained importance as host countries of R&D interna-

tionalization activities but developing countries also increasingly engaged in out-

ward R&D activities. Despite these developments, the largest part of international

R&D still takes place between the triad area, comprising the US, the EU and Japan

(OECD 2008b).

Given the benefits that accrue from the presence and activities of R&D intensive

foreign-owned firms, attracting them has been high on the political agenda of many

economies. R&D expenditure of foreign-owned firms may increase aggregate R&D

and innovation expenditure of the country. It may give rise to substantial informa-

tion and knowledge spillovers (Blomström and Kokko 2003), foreign-owned firms

may boost the demand for skilled personnel including R&D staff, or R&D efforts

and the presence of foreign-owned firms may lead to structural change and agglom-

eration effects (Young et al. 1994).

The ensuing analysis investigates determinants of the process of international-

ization of business R&D. It uses a novel and unique database of bilateral business

R&D expenditure of foreign affiliates in the manufacturing sector of selected

OECD countries for the period from 2001 to 2007. Given the type and quality of

the data, the analysis contributes greatly to the ongoing discussion as to key

determinants of the process of R&D internationalization as previous data-related

shortcomings are remedied. Specifically, since the analysis uses R&D expenditure

data instead of patent data, some of the potential biases and limitations patent data

suffer from are bypassed and avoided (Cohen et al. 2000; Hinze and Schmoch 2004;

Nagaoka et al. 2010). Methodologically, an extended gravity approach is taken

which helps shed light on the roles of standard gravitational forces like market size,

distance, cultural or physical proximity for the internationalization of R&D,

extended to include additional technology and innovation related drivers of R&D

internationalization.
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The results highlight the essential role of market size, cultural, physical and

technological proximity for the process of R&D internationalization. Moreover, it

finds evidence that additional scientific or technological capabilities matter

strongly: abundant human capital in the host country is conducive to R&D activities

of foreign-owned firms, while a lack of human capital in the home country appears

to encourage the relocation of innovative activities abroad. Similarly, strong and

internationally competitive R&D capabilities in the host country turn out to be

conducive to R&D efforts of foreign-owned firms. They can exploit these capabil-

ities for own research activities. Finally, the analysis finds that R&D expenditure of

foreign-owned firms is regionally decentralized and not concentrated within

the EU.

The remainder of the paper is structured as follows. Section 10.2 presents related

literature and previous empirical evidence on important determinants of cross-

border R&D activities while Sect. 10.3 discusses the data used in the analysis and

provides some general patterns of R&D internationalization. Furthermore, some

hypotheses are formulated that will be tested empirically in the ensuing analysis.

The econometric specifications tested are outlined in Sect. 10.4 while Sect. 10.5

presents and discusses the results. Finally, Sect. 10.6 concludes.

10.2 Related Literature

Empirical evidence is quickly mounting: the process of the internationalization of

R&D is the product of a number of different key factors and drivers. In that respect,

an ever growing body of empirical literature consistently points at the pivotal role

played by economic size of countries in fostering cross-border R&D activities.

Specifically, foreign-owned firms may have to adapt their products and production

processes to suit local demand patterns, consumer preferences or to comply with

legal regulations and laws. In view of that, these firms may find it easier to cover the

cost of adaptive R&D in larger markets with higher demand for their goods and

services, better sales prospects and consequently larger revenues. In the same way,

foreign-owned firms may have stronger incentives to develop new products or

processes from scratch in faster growing markets. As highly uncertain and risky

activities, innovative activities gobble up immense resources that can easier and

faster be recovered on larger markets with more promising market potentials. Dachs

and Pyka (2010) use EPO patents for the period 2000–2005 to identify essential

determinants of cross-border patents. They show that cross-border patenting activ-

ities are significantly higher if both home and host economies are larger.

Moreover, empirical studies have stressed that cross-country differences in the

quality and size of a skilled workforce are an important determinant of the process

of R&D internationalization: Lewin et al. (2009) demonstrate that a shortage of

high skilled science and engineering talent in the US explains the relocation of

product development to other parts of the world while Hedge and Hicks (2008)

stress that innovative activities of overseas US subsidiaries are strongly related to
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the scientific and engineering capabilities of the host countries. A similar pull-effect

of human capital is identified by Erken and Kleijn (2010) who show that strong

human resources in science and technology in the host country are strong location

factors for international R&D activities.

In addition, technological proximity which captures similarities in technological

specialization among countries is found to be conducive to cross-border innovative

activities. Guellec and van Pottelsberghe de la Potterie (2001) find that countries

with similar patterns of technological specialization tend to more strongly cooper-

ate in patenting activities.

Similarly, stronger R&D efforts in terms of higher R&D intensities in both home

and host countries foster the internationalization of R&D (Dachs and Pyka 2010).

Moreover, effects tend to differ across countries as the technological strength of the

home country appears to exert a stronger push effect than the technological strength

of the host country. In a similar vein, Erken and Kleijn (2010) show that the stock of

private R&D capital in a country represents an essential driver of the process of

R&D internationalization, either as a guarantee for sizeable knowledge spillovers,

or as a so-called ‘place-to-be effect’.

The attractiveness of countries for overseas R&D activities is also shaped by

public policy intervention. Specifically, as highlighted by Steinmueller (2010),

science, technology and innovation (STI) policy measures like public subsidies

for R&D performing firms or measures to foster cooperation among firms or

between firms and universities or research institutes may remove obstacles to

innovation and strengthen the capabilities of national innovation systems. An

innovation-friendly environment, in turn, may be a considerable locational advan-

tage and influence internationalization decisions of firms in R&D. Related to that,

Dachs and Pyka (2010) emphasize that strong IPR mechanisms also matter for

cross-border patenting. As such, they highlight that systematic policies aimed at the

strengthening of prevailing IPR mechanisms help render cross-border patenting

activities more attractive.

Moreover, while differences in labour cost between the home country and

locations abroad are one of the most important motives for the internationalization

of production, empirical evidence that differences in the cost of R&D personnel are

a major driver for the internationalization of R&D is weak, however: compared to

other factors, cost advantages of R&D location are found to be pretty modest (Booz

Allen Hamilton and INSEAD 2006; Thursby and Thursby 2006; Kinkel and Maloca

2008; Belderbos et al. 2009; European Commission 2010). However, cost differ-

ences appear to gain importance when firms consider to locate R&D and innovation

activities in emerging economies, or when firms have to choose between two

similarly attractive locations (Booz Allen Hamilton and INSEAD 2006; Thursby

and Thursby 2006; Cincera et al. 2009).

The negative relationship between distance and any bilateral flows of either

goods, capital or people is one of the most robust findings in the rich strand of

literature emerging from the gravity model tradition. Traditionally, as emphasized

by Tinbergen (1962), distance is interpreted as a proxy for transportation costs or an

index of uncertainty and information costs firms have to shoulder when penetrating

178 S. Leitner et al.



foreign markets. In the case of overseas R&D, these costs include additional costs

of coordinating geographically dispersed R&D activities, the costs of transferring

knowledge over distance, and a loss of economies of scale and scope when R&D

becomes more decentralized (Sanna-Randaccio and Veugelers 2007; Gersbach and

Schmutzler 2011). Related evidence is provided by Castellani et al. (2011) who

throw light on the specific role of distance for cross-border R&D FDI relative to

manufacturing investments. They emphasize that once social, cultural and institu-

tional factors like shared language or membership in the same regional trade

agreement are accounted for, the location of R&D labs abroad is independent of

geographic distance and therefore equally likely to be found close by or farther

away. This is taken as conclusive evidence for the limited role of transportation

costs but the pivotal role of uncertainty and prevailing informational barriers and

costs in deterring cross-border R&D FDI. In contrast, however, geographic distance

remains an important determinant for FDI in manufacturing or other types of FDI.

Supportive evidence also emerges for the importance of both cultural and

physical proximity between countries for cross-border flows and activities, as

typically proxied by common language or common borders, respectively. Such

proximity effects potentially counteract the effects of pure geographical distance

and thus have to be taken into account separately. In particular, lower cultural

barriers between culturally similar countries as well as shared borders between

countries often facilitate the flow of goods, capital or people. Strong cultural ties

between countries ease communication and the exchange of information and

knowledge across borders, rendering cross-border flows and activities easier and

less costly. Physical proximity reduces transportation and travel costs and therefore

further enhances cross-border flows. Various authors stress that foreign-owned

firms have to overcome additional institutional and cultural barriers, a disadvantage

that is known as the ‘liability of foreignness’ (Zaheer 1995; Eden and Miller 2004).

This concept captures foreign-owned firms’ lack of market knowledge but also their

lower degree of embeddedness in informal networks in their host countries, deci-

sive elements for foreign-owned firms when devising innovation strategies in terms

of whether and how to develop new or adapt existing products and/or processes to

local preferences and what resources to allot to these innovative activities. Sup-

portive empirical evidence is provided by Guellec and van Pottelsberghe de la

Potterie (2001) who use patent data for 29 OECD member countries to explain

prevailing patterns of cross-border ownership of inventions as well as of research

cooperation in the mid-1980s and the mid-1990s. They stress that both cross-border

ownership of patent inventions are more widespread among countries that share

common borders. Moreover, Guellec and van Pottelsberghe de la Potterie (2001)

also demonstrate that cross-border patenting and cooperation is significantly stron-

ger among culturally similar countries.

Finally, empirical evidence also points at the regional concentration or scientific

integration of cross-border inventive activities. As such, cross-border patenting is

higher among EU-15 countries (Dachs and Pyka 2010), while probably due to the

shared history and broad cultural similarities, cross-border ownership of inventions
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as well as of research cooperation was stronger among Nordic countries (Guellec

and van Pottelsberghe de la Potterie 2001).

From this survey a couple of hypotheses concerning R&D expenditure decisions

can be extracted which will be explored and tested below. First, market size as

proxied by GDP and GDP per capita of the host and home countries is an important

determinant of bilateral R&D activities. Second, concerning the quality and size of

skilled workforce both push and pull factors are at play with a lack of such workers

forcing firms to invest abroad whereas a skill workforce might attract R&D

activities in the host countries. Third, existing R&D efforts in both the host and

home countries are conducive to further bilateral R&D spending. Finally, there is a

set of variables capturing issues of distance and proximity: particularly, geograph-

ical distance is expected to correlate negatively with bilateral R&D expenditures

whereas factors like technological, cultural and physical proximity (measured

e.g. by language and border effects) are expected to correlate positively.

Some potential additional determinants emerge from the literature survey which

however could not explicitly be taken into account either due to high correlation

with other independent variables or a lack of data. These variables are labour costs

(which are highly correlated with GDP per capita) and measures of public policy

intervention. Instead, a number of dummies will be included to capture such effects.

The next section presents descriptive patterns of bilateral R&D expenditures and

discusses the sources of data that will be used for the econometric analysis.

10.3 The Role of Gravitational Forces

The ensuing analysis is based on a recently compiled database of bilateral business

R&D expenditure of foreign affiliates in the manufacturing sector of selected

OECD countries.1 Bilateral R&D expenditure of firms from country A in country

B will be referred to as inward R&D expenditure or R&D expenditure of foreign

affiliates throughout the text.

Data on inward R&D expenditure cover the period from 2001 to 2007 and was

collected from national sources and compiled by the Austrian Institute of Technol-

ogy (AIT) and the Vienna Institute for International Economic Studies (wiiw) in

2011.2 This data set was complemented by additional data from different sources:

standard gravity indicators such as distance (DISTij), common language

1 The following OECD countries are covered: Austria (AUT), Belgium (BEL), Bulgaria (BUL)

Canada (CAN), the Czech Republic (CZE), Denmark (DNK), Estonia (EST), Finland (FIN),

France (FRA), Germany (GER), Greece (GRC), Hungary (HUN), Ireland (IRL), Japan (JPN),

the Netherlands (NLD), Norway (NOR), Poland (POL), Portugal (PRT), Romania (ROM), Spain

(ESP), the Slovak Republic (SVK), Slovenia (SVN), Sweden (SWE), Turkey (TUR), the UK

(GBR) and the US (USA).
2 Data was collected as part of the project ‘Internationalisation of business investments in R&D

and analysis of their economic impact’ and have been slightly revised and updated for this paper.
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(COMLANGij) or common boarder (COMBORDij) are taken from databases created

by CEPII. Information on real GDP, tertiary school enrolment rates, high-

technology exports and patent applications of resident and non-residents and total

populations in country i and j come from the World Bank’s World Development

Indicators (WDI). Finally, information on the technology distance between country

i and j was calculated with patent data provided by the EPO PATSTAT database.

This index measures correlations in the technological specialisation between coun-

tries. It is designed as a matrix of correlation coefficients such that the technology

distance proxy increases with a decreasing technological distance between two

countries. Descriptive statistics of all variables used in the estimations are provided

in Tables 10.4 and 10.5 in the Appendix.

Figures 10.1, 10.2, 10.3 and 10.4 below give a general picture of the magnitudes

of R&D internationalization, identify key players (Fig. 10.1) and attractive loca-

tions for R&D efforts of foreign affiliates (Figs. 10.2 and 10.3) and show the spatial

structure of the network of bilateral R&D expenditure between European countries

(Fig. 10.4). As such, they reveal important phenomena and underpin the hypotheses

that will be tested in the ensuing analysis.

A general picture of inward R&D expenditure in the manufacturing sector by

country of origin for key global players (that is the EU, the USA, Japan, China and

Switzerland) is drawn in Fig. 10.1 below. The size of each pie chart captures the

total amount of inward R&D expenditure in a country, while pie slices represent the

volume of inward R&D expenditure by country of origin. Arrows illustrate major

relations in inward R&D expenditure between countries. Figure 10.1 emphasizes

that, as major recipients of inward R&D expenditure, both, the USA as well as the

EU are the two key players in the process of internationalization of R&D. Specif-

ically, in 2007, inward R&D expenditure of US firms in the EU and inward R&D

expenditure of EU firms in the US together accounted for two-third of total inward

R&D expenditure in manufacturing worldwide.3

Moreover, Fig. 10.1 points at the strong mutual importance of both key players

for their respective inward R&D expenditure volumes: in 2007, US firms accounted

for more than 65 % of total inward R&D expenditure in manufacturing in the

EU. Similar, around 62 % of EU inward R&D expenditure in the manufacturing

sector stem from US firms located in the EU. In addition, Switzerland was the

second most important country of origin with around 16 % of all inward R&D

expenditure coming from Swiss firms located in the EU and around 22 % located in

the USA. In contrast, Japanese firms located either in the EU or the US accounted

for a comparatively small fraction of inward R&D expenditure only.

More recently, China emerged as a new attractive location for R&D efforts of

foreign-owned firms. While Chinese data is incomplete and plagued by methodo-

logical issues which render a comparison with data from OECD countries difficult,

3 The European Union is considered as one entity, and intra-EU relationships (for example R&D of

German firms in France) are not taken into account.
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data on R&D expenditure of wholly foreign-owned firms that operate in China

suggest around EUR 2.5 billion for the year 2007.

Next, Fig. 10.2 takes a closer look at R&D expenditure of foreign affiliates in the

US, by country of origin (between 1998 and 2010) and therefore identifies the

importance of inward R&D efforts of single EU countries in the US.4 Specifically, it

depicts the simple country penetration, as the ratio of inward R&D expenditure

from a specific EU country to total inward R&D expenditure from the EU in the US

and points at the dominance of three EU countries only. As far back as 1998 and up

to 2006, affiliates of German, French and British firms accounted for around 80 %

of total inward R&D expenditure by EU firms in the US. Throughout, Germany

ranked first, followed by the UK and France. Only in 2006 did the UK overtake

Germany as the most important investor in R&D in the US. Hence, given that the

US is the world’s largest economy with a huge market and attractive sales poten-

tials, this supports the hypothesis that market size matters.

The opposite perspective is taken in Fig. 10.3 which depicts R&D expenditure of

US foreign affiliates located in the EU, by country of destination (between 1998 and
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Fig. 10.1 Inward R&D expenditure between the EU, the US, Japan, China and Switzerland:

manufacturing only (2007, in EUR million at current prices). Reading note: Firms from the

European Union spent EUR 774 million on R&D in Switzerland in 2007; Swiss firms spent

EUR 2.470 million on R&D in the EU-27 in 2007. Swiss data include also the service sector; data

for China is estimated based on national sources and US and Japanese outward data (Source:

OECD, Eurostat, national statistical offices, own calculations)

4 Due to lacking data on outward R&D expenditure for most EU countries, Fig. 10.2 is based on US

inward data.
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2010) as the ratio of US outward R&D expenditure in a particular EU country to

total US outward R&D expenditure in the EU. It demonstrates that throughout the

period from 1998 to 2010, the UK and Germany were the two most important and

attractive individual EU countries for US R&D efforts, together absorbing more

than 50 % of all US outward R&D expenditure in the EU. However, starting in

2005, France, Italy and Spain appear to have lost some ground while other, smaller

Member States have become more attractive locations for US R&D efforts. The

importance of the two largest EU economies as key locations for US R&D efforts in

the EU underscores above hypothesis that ‘the size of the market matters’.

In addition, a comparison of Figs. 10.2 and 10.3 shows that US inward R&D

expenditure in the EU is much less concentrated in a few economies only than EU

inward R&D expenditure in the US, as small and medium-sized EU economies

(like Belgium, Ireland, the Netherlands or Austria) are comparatively more impor-

tant locations for R&D efforts of US companies than the US is for foreign affiliates

from small and medium-sized EU economies in the US.

Finally, Fig. 10.4 zooms in on the EU and depicts the spatial structure of the

network inward R&D expenditure among European countries. The edge size (that is

the link between countries) corresponds to the sum of inward R&D expenditure of

firms from country A in country B and vice versa5 while the node size of each
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Fig. 10.2 Countries of origin of inward R&D expenditure by EU firms in the US, 1998–2010.

Note: Total EU-27 includes all European companies except Swiss companies. (Source: OECD

based on US data by the US Bureau of Economic Analysis, own calculations)

5 This measure corresponds to weighted degree centrality in the social network analysis literature.
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country corresponds to the total sum of inward R&D expenditure in the country.

Nodes are located at the capital cities of each country.

The spatial network map for 2007 reveals a strong regional clustering of inward

R&D expenditure in the centre of Europe while the periphery is participating to a

lower degree. There are strong neighbouring effects between some countries, in

particular Germany, the Netherlands, Switzerland and Austria. Moreover, Germany

appears as the central hub, showing high interaction intensity, particularly with its

direct neighbours the Netherlands, Switzerland, Austria or France. Similar

neighbourhood effects are apparent for the UK or Spain, which show particular

high interaction intensity with Sweden and France or France and Belgium, respec-

tively. In contrast, Finland has a diverse and big set of partner countries, in terms of

absolute size, however, the interactions are comparatively low.

All in all, while New EU Member States (NMS) are in general connected to the

system of R&D investment in Europe, the magnitudes are comparatively low, with

the Czech Republic and Hungary showing the strongest R&D-based embeddedness.

This peripheral position of NMS may mainly be due to the low number of

multinational firms originating from there. Interestingly, business R&D investment

of NMS appears far less integrated than public research (including universities and

research institutions): Scherngell and Barber (2011) use information on interna-

tional collaboration patterns in the European Framework Programmes (FPs) and
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Fig. 10.3 Location of inward R&D expenditure of US firms in the EU,1999–2010.Note: *NMS-10/

12 comprises the Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland,

Slovenia and Slovakia (all from 2004 to 2007) and in 2007 Bulgaria and Romania also. (Source:
OECD based on US outward data by the US Bureau of Economic Analysis, own calculations)
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demonstrate that NMS seem to be rather well integrated in pan-European research

collaborations, while Fig. 10.4 highlights that this is less so for R&D efforts in the

industry sector.

10.4 Econometric Specification

In order to identify both home and host country characteristics that are either

conducive or obstructive to the process of R&D internationalization, a gravity

model approach is pursued. Generally, in the empirical literature, gravity models

are popular and well known for their success in explaining international trade flows

(see Anderson 1979 or Deardorff 1984 for a theoretical discussion and Breuss and

Egger 1999 or Helpman et al. 2008 for some empirical results).

In essence, the gravity equation for trade says that trade flows between two

countries are proportional to the two country’s size (as proxied by GDP) but

Fig. 10.4 Inward R&D expenditure flows between European countries (2007). Note: The strength
of lines between country A and B corresponds to the sum of R&D expenditure of firms from

country A which operate in country B, and vice versa. The size of the node per country corresponds

to the sum of R&D expenditure of all foreign-owned firms in the country (Source: OECD,

Eurostat, national statistical offices, own calculations)
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inversely related to the distance between them. Moreover, these models also often

account for physical or cultural proximity in terms of shared border, common

language or colonial history, respectively. Increasingly, gravity models are also

used to explain FDI flows (Brainard 1997; Jeon and Stone 1999 or Bergstrand and

Egger 2007), migration flows (Lewer and Van den Berg 2008) or flows of workers’

remittances (Lueth and Ruiz Arranz 2006) between countries.

More recently, gravity models also found their way into the analysis of cross-

border inventive activities (see, for example Guellec and van Pottelsberghe de la

Potterie 2001; Dachs and Pyka 2010 or Castellani et al. 2011). In some cases simple

gravity specifications might suffer from interdependencies such that FDI or also

R&D expenditures in one destination are not independent from activities in other

destinations (see e.g. Bloningen 2005, for a survey of FDI determinants). Further-

more in some cases more complex spatial interdependencies might matter as

e.g. market size of neighbouring countries or regions affect FDI or R&D decisions.

Given the limitations of the data at hand such effects can however not be considered

in the specification used in this paper.

Hence, following the tradition of the gravity literature, the following economet-

ric specifications are estimated to shed light on the roles of home and host country

characteristics in driving inward R&D expenditure:

lnRDijt¼λtþαiþαjþβ1lnDISTijþβ2COMLANGijþβ3COMBORDijþ . . .
. . .þβ4lnGDPitþβ5lnGDPjtþδzXzijtþεijt:

ð10:1Þ

And, if account is also taken of the level of economic development:

lnRDijt¼λtþαiþαjþβ1lnDISTijþβ2COMLANGijþβ3COMBORDijþ . . .

. . .þβ4lnGDPitþβ5lnGDPjtþβ6ln
GDPit

POPit

0
@

1
Aþβ7ln

GDPjt

POPjt

0
@

1
AþδzXzijtþεijt,

ð10:2Þ

where lnRDijt is the log of business R&D expenditure of foreign affiliates from

country j located in the host country i at time t.
lnDISTij is the log of the geographical distance between country i and j, mea-

sured as the simple distance between most populated cities (in km). As an index of

uncertainty and additional information costs (like additional costs of coordinating

geographically dispersed R&D activities or of transferring knowledge over dis-

tance), R&D expenditure of foreign-owned firms is expected to decline with

growing distance.

COMLANGij and COMBORDij are dummies taking the value 1 if the two

countries i and j share a common language or border, respectively. Both are

included to capture cultural and physical proximity between country i and j and
are expected to foster R&D activities of foreign-owned firms. Specifically, strong

cultural ties between countries ease communication and the exchange of informa-

tion and knowledge across borders, while physical proximity reduces transportation
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costs, together rendering cross-border R&D activities comparatively easier and less

costly.

Furthermore, lnGDPit and lnGDPjt refer to the log of real gross domestic product

in country i and j, respectively and are proxies for the economic size of countries

i and j. Positive effects are expected, since, given their superior market potentials

and sales prospects that allow for an easy and quick recovery of sizeable R&D

outlays, larger markets are more attractive and conducive to R&D efforts of

foreign-owned firms.

Account is also taken of the role a country’s level of economic development has

in attracting business R&D expenditure of foreign-owned firms. As such, wealthier

economies (as proxied by their respective real GDPs per capita, namely ln(GDPit/

POPit) for country i and ln(GDPjt/POPjt) for country j) may not only have a higher

purchasing power, but may also be home to consumers with a more pronounced

‘love for variety’ (see Dixit and Stiglitz 1977) so that foreign-owned firms which

develop or produce novel products or processes consider economies with higher

standards of living more attractive markets with better profit perspectives.

In addition to above standard gravity model indicators, innovation related

indicators are included to throw light on their roles in driving the internationaliza-

tion of R&D. Xzijt is a matrix of z additional innovation related variables that are

expected to affect R&D expenditure of foreign affiliates to different degrees. In

particular, the analysis includes gross tertiary school enrolment rates in country

i and j to account for the pivotal role the quality of human capital plays for any

successful R&D efforts (ENR_TER). Specifically, empirical evidence highlights

that cross-country differences in the quality and size of a skilled workforce are an

important determinant of R&D internationalization: Lewin et al. (2009) show that

firms relocate product development to other parts of the world if faced with a

shortage of skilled science and engineering talent, while Hedge and Hicks (2008)

highlight that an abundance of graduates in science and technology and strong

scientific and engineering capabilities in a host country are able to attract business

R&D into a host country.

Moreover, to capture a country’s general level of inventiveness, the ratio of

patent applications of residents to patent applications of non-residents in country

i and j is included (PA_RATIO). Specifically, more inventive host countries are

attractive for foreign-owned firms seeking to harness prevailing local technology

and innovation capabilities for the development of new products or processes.

R&D activities of foreign-owned firms may also crucially depend on differences

in countries’ abilities to develop and produce internationally competitive high-

technology products. In particular, countries with strong indigenous R&D and

technological capabilities tend to specialize in high-technology industries and to

generate high-technology products (and services) that more easily withstand fierce

competition in the global arena. Hence, a high share of high-technology exports in

GDP is indicative of an internationally competitive indigenous R&D base foreign-

owned firms can harness to successfully develop new products and processes or to

adapt products and processes to local conditions and preferences. Therefore, high-

technology exports of country i and j (defined as the share of high-technology
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exports that are produced with high R&D intensity in total GDP) are included to

capture the quality of indigenous R&D and technological capabilities (HTX_SH).

Additionally, cross-country differences in the levels of technological develop-

ment may also affect the internationalization of R&D. Specifically, there has been a

long-standing debate in the FDI literature on the existence and extent of techno-

logical spillovers from foreign direct investments with, however, lacking consen-

sus. Some empirical studies lend support to the catching-up hypothesis put forward

by Findlay (1978) and find that technological spillovers increase with a widening of

the technology distance (e.g. Castellani and Zanfei 2003 or Peri and Urban 2006).

Others suggest the opposite such that only a narrow technology distance is condu-

cive to technological spillovers (e.g. Kokko et al. 1996 or Liu et al. 2000) as closer

levels of technological development across countries renders them technologically

more compatible, with sufficient absorptive capacities to benefit from each other’s

research efforts and successes. Hence, the technological distance between country

i and j is included, in terms of a correlation coefficient which, by construction, lies

between [0, 1] (TDIS). A high value of the coefficient indicates a narrow techno-

logical distance and similar specialization patterns between two countries.

Furthermore, dummies for EU membership are included which capture whether

only country i is a member of the EU, whether country j is a member of the EU only,

or whether both i and j are EU-member countries. This will show whether R&D

expenditure of foreign-owned firms is higher between EU member countries or

between EU and non-EU countries. Boschma (2005) refers to institutional proxim-

ity to capture that a common institutional set-up of two countries may facilitate

business activities of firms abroad.

Finally, Eq. 10.1 also includes host and home country fixed effects (αi and αj for
country i and j, respectively) to account for country heterogeneity and year fixed

effects (λt) to take account of common macroeconomic shocks.

10.5 Results

Results are presented in Table 10.1 for different econometric specifications (see

Eqs. 10.1 and 10.2) and estimation techniques: columns (1) to (3) provide results for

the basic specification as given in Eq. 10.1, while columns (4) to (6) also account for

the effect of the level of economic development on R&D expenditure of foreign-

owned firms as specified in Eq. 10.2. Moreover, from a methodological point of

view, columns (1) and (4) provide results for pooled OLS, columns (2) and (5) for

fixed effects for receiving and sending countries and columns (3) and (6) for

random effects specific for bilateral country pairs. The main shortcoming of the

pooled OLS approach lies in its inability to allow for heterogeneity of host and

home countries since it assumes that all countries are homogeneous. This is

remedied by fixed effects (column (2)) and random effects approaches (column

(3)) which explicitly account for the heterogeneity of both individual host and home

countries as well as for heterogeneity of host-home country pairs, respectively.
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As expected, the size of both home and host countries emerges as one key

determinant of R&D expenditure of foreign-owned firms. In particular, a 1 %

increase in the both host and home country’s market size is associated with a rise

in R&D expenditure of foreign affiliates by between 0.8 % and 1 %. However, size

effects slightly differ across countries and tend to be stronger in the host country.

This again provides supportive evidence of the ‘size matters’ hypothesis.

The analysis also demonstrates that apart from size, prevailing levels of eco-

nomic development matter for the scale of cross-border R&D expenditure. In

particular, cross-border R&D expenditure tends to be higher in wealthier econo-

mies: a 1 % rise in the host country’s GDP per capita increases R&D expenditure of

foreign-owned firms by around 0.7–0.8 % while a similar 1 % increase in the home

country’s GDP per capita has a slightly higher effect and is associated with an

around 1 % increase in R&D efforts of foreign-owned firms.

Moreover, light is shed on the particular roles additional innovation-related

indicators play for the process of R&D internationalization. Results in Table 10.1

highlight that human capital emerges as a non-negligible determinant of cross-

country R&D expenditure of foreign-owned firms. However, results also reveal that

underlying dynamics appear to differ across specifications. Specifically, column

(1) to (3) show that, in line with findings by Hedge and Hicks (2008), there is

evidence that a strong human capital base in the host country attracts business

R&D: a 1 % point increase in the host country’s tertiary enrolment rate is associated

with a 2.9 % increase in inward R&D expenditure. In contrast, results presented in

columns (4) to (6) stress that, once levels of economic development of both host and

home country are also taken into account, an abundance of human capital in the

home country appears to discourage R&D internationalization activities of foreign-

owned firms. This is in line with findings by Lewin et al. (2009) who emphasize that

firms tend to relocate product development to other parts of the world if faced with a

shortage of skilled science and engineering talent at home. However, diverging

results on the role of human capital for the process of R&D internationalization are

not – as it may seem – contradictory but suggest that, once levels of economic

development are also controlled for, the host country’s endowment with human

capital becomes of secondary importance while its level of development (together

with its economic size) assumes the role of main driver of the process of R&D

internationalization.

Similarly, there is evidence that a strong and internationally competitive indig-

enous R&D base in the host country is conducive to R&D expenditure of foreign-

owned firms. Hence, host countries that specialize in and generate internationally

competitive high-technology products are attractive R&D locations for foreign-

owned firms as they possess indigenous technological capabilities foreign-owned

firms can exploit for their innovative activities. In contrast, no decisive role can be

attributed to a country’s general level of inventiveness in fostering R&D expendi-

ture of foreign affiliates.

Finally, the results support the hypothesis concerning distance and proximity

related determinants. The analysis finds consistent evidence for the pivotal role

geographic distance between countries plays in curbing the process of R&D

internationalization. Specifically, inward R&D expenditure falls by between
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0.3 % and 0.8 % in response to a 1 % increase in distance between countries, where

distance captures additional coordinative costs of regionally dispersed R&D activ-

ities or diseconomies of scale and scope as a result of more decentralized R&D

activities.

Moreover, cultural proximity tends to be a conducive determinant of R&D

expenditure of foreign affiliates. This supports the ‘liability of foreignness’ hypoth-

esis formulated above: lower cultural barriers improve market knowledge and the

understanding of customer needs and facilitate communication and the exchange of

information and knowledge across borders. In a similar vein, physical proximity

also fosters the internationalization of R&D such that foreign affiliates located in

neighbouring countries tend to spend significantly more on R&D activities than

affiliates located farther away.

In line with results by Guellec and van Pottelsberghe de la Potterie (2001), the

analysis also emphasizes that technological distance matters. In particular, R&D

expenditure of foreign-owned firms appears to be higher between countries with

similar technological specializations which may indicate that R&D activities of

foreign-owned firms are attracted by potential spillovers in technological domains

similar to their own specialization. Finally, the analysis also demonstrates that

cross-border R&D expenditure tend to be regionally dispersed across EU as well

as non-EU member countries.

10.6 Summary and Conclusion

In the course of the last two decades, R&D expenditure of foreign-owned firms

increased tremendously, an indication that firms increasingly conduct research and

development outside their home countries. Against that backdrop, the analysis

identified important determinants of this more recent process of increased R&D

internationalization. It used a novel data set on R&D expenditure of foreign-owned

firms in the manufacturing sector of a set of OECD countries, spanning the period

from 2001 to 2007.

Generally, the results attribute a pivotal role to geographic distance in curbing

R&D expenditure of foreign-owned firms. This may be explained by the costs of

R&D internationalization (like additional costs of coordinating geographically

dispersed R&D activities or of transferring knowledge over distance) which tend

to noticeably increase with distance which, in turn, renders highly dispersed R&D

activities more costly and consequently less attractive. Moreover, cultural proxim-

ity which facilitates communication and the exchange of knowledge as well as

physical proximity which turns neighbouring countries attractive R&D hubs

emerge as important determinants of the process of R&D internationalization.

Furthermore, as expected, economic size and wealth of host and home countries

alike are key determinants which – in the light of larger markets with more

favourable sales prospects as well as wealthier consumers with a stronger and

more pronounced ‘love for variety’ – stimulate R&D efforts of foreign affiliates.
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In addition, R&D efforts of foreign-owned firms also respond to additional

scientific or technological capabilities. In particular, while some indication is

found that a strong human capital base in the host country attracts business R&D

of foreign-owned firms, there is additional evidence that an abundance of human

capital in the home country tends to curtail the relocation of innovative activities to

other parts of the world. Similarly, a strong and internationally competitive indig-

enous R&D base in the host country which foreign-owned firms can harness and

exploit for their own research activities is conducive to R&D expenditure of foreign

affiliates. Furthermore, R&D expenditure of foreign-owned firms is also signifi-

cantly stronger among countries with similar levels of technological development,

which renders technological compatibility among countries a non-negligible driver

of the process of R&D internationalization. Finally, some indication is found that

R&D expenditure of foreign-owned firms is regionally decentralized and not

concentrated within the EU.

These results have important implications for science, technology and innova-

tion policy. They point at areas where governments can take concerted action to

render their countries more attractive for R&D activities of foreign-owned firms.

These critical areas are science and education. Governments that succeed in

strengthening domestic research and development capabilities and in raising ter-

tiary enrolment rates may also succeed in attracting R&D of foreign-owned firms

(Veugelers et al. 2005; OECD 2008a; De Backer and Hatem 2010). This study

provides empirical evidence on how proximity among countries and country-

specific attributes like economic size, wealth, inventiveness, etc. affects the inten-

sity of cross-country R&D flows.

Though this sheds a first light on determinants on this increasingly important

phenomenon, analyses in this field still suffer from severe data limitations and

inconsistencies which have to be addressed and resolved in future research. Other

potentially important factors capturing R&D and innovation systems, interaction

with public R&D and institutions like universities and research institutions, market

structures and FDI flows, etc. would also have to be considered to give a more

complete picture of R&D flows across countries. Methodologically a comprehen-

sive panel data set should allow to further account for spatial dependencies and

spatial lag structures incorporating effects of neighbouring countries performance

and market potentials (see, e.g., Chap. 6 of this volume by Chun). Finally, R&D

patterns are largely determined by a few, potentially large, enterprises suggesting

that firm level data and firm as well as country case studies would be enlightening

though challenging avenues for future research (see Dachs et al. 2014, for some

detailed evidence).

Acknowledgements The analysis of this paper is based on data collected by the project

‘Internationalisation of business investments in R&D and analysis of their economic impact’,

commissioned by the European Commission, DG Research and Innovation (Contract

Nr. RTD/DirC/C3/2010/SI2.563818). Special thanks go to Matthieu Delescluse, who supported

the project as project officer. Moreover, we acknowledge the support by EUROSTAT in collecting

the data. The authors also thank the participants of special session on the internationalisation of

business R&D held at the Annual ERSA conference 2012 in Bratislava for their useful comments.

10 Determinants of International R&D Activities: Evidence from a Gravity Model 193

http://dx.doi.org/10.1007/978-3-319-02699-2_6


T
a
b
le

1
0
.2

C
o
rr
el
at
io
n
m
at
ri
x
fo
r
h
o
st
an
d
h
o
m
e
co
u
n
tr
y
d
et
er
m
in
an
ts
o
f
R
&
D
in
te
rn
at
io
n
al
iz
at
io
n

L
o
g

D
IS
T

C
O
M
L
A
N
G

C
O
M
B
O
R
D

L
o
g

R
G
D
P

H
O
S
T

L
o
g

R
G
D
P

H
O
M
E

E
N
R
_
T
E
R

H
O
S
T

E
N
R
_
T
E
R

H
O
M
E

P
A
_
R
A
T

H
O
S
T

P
A
_
R
A
T

H
O
M
E

H
T
X
_
S
H

H
O
S
T

H
T
X
_
S
H

H
O
M
E

T
D
IS
T

L
o
g
D
IS
T

1

C
O
M
L
A
N
G

�0
.0
9
6

1

C
O
M
B
O
R
D

�0
.4
5
4

0
.3
0
0

1

L
o
g
R
G
D
P

H
O
S
T

0
.2
3
0

0
.0
9
4

0
.0
0
0

1

L
o
g
R
G
D
P

H
O
M
E

0
.3
0
8

0
.0
9
6

0
.0
0
1

�0
.0
2
6

1

E
N
R
_
T
E
R

H
O
S
T

0
.1
5
7

�0
.0
5
2

�0
.0
6
1

0
.1
9
7

�0
.0
0
4

1

E
N
R
_
T
E
R

H
O
M
E

�0
.0
7
4

�0
.0
5
3

�0
.0
1
0

�0
.0
0
3

0
.0
6
4

0
.0
4
0

1

P
A
_
R
A
T

H
O
S
T

�0
.0
4
8

�0
.0
3
2

0
.0
1
0

0
.0
7
4

0
.0
0
1

0
.3
3
5

0
.0
5
5

1

P
A
_
R
A
T

H
O
M
E

�0
.1
1
3

�0
.0
3
2

0
.0
3
0

0
.0
0
0

0
.0
8
7

0
.0
5
2

0
.4
1
4

0
.0
4
2

1

H
T
X
_
S
H

H
O
S
T

�0
.0
3
3

0
.0
8
5

�0
.0
1
4

�0
.1
4
4

0
.0
0
5

�0
.0
6
7

�0
.0
1
4

�0
.0
1
2

�0
.0
1
1

1

H
T
X
_
S
H

H
O
M
E

�0
.0
5
3

0
.0
7
7

0
.0
0
0

0
.0
0
4

�0
.0
4
0

�0
.0
1
0

0
.0
3
4

�0
.0
0
4

0
.0
5
6

�0
.0
2
0

1

T
D
IS
T

�0
.0
0
9

0
.1
7
5

0
.1
0
0

0
.2
8
8

0
.3
4
7

0
.1
8
9

0
.1
5
6

0
.0
7
7

0
.1
1
2

0
.0
3
3

0
.0
7
0

1

A
p
p
en
d
ix

194 S. Leitner et al.



T
a
b
le

1
0
.3

C
o
rr
el
at
io
n
m
at
ri
x
fo
r
h
o
st
an
d
h
o
m
e
co
u
n
tr
y
d
et
er
m
in
an
ts
o
f
R
&
D
in
te
rn
at
io
n
al
iz
at
io
n
–
w
it
h
le
v
el
s
o
f
ec
o
n
o
m
ic

d
ev
el
o
p
m
en
t

L
o
g
D
IS
T

C
O
M
L
A
N
G

C
O
M
B
O
R
D

L
o
g

R
G
D
P

H
O
S
T

L
o
g

R
G
D
P

H
O
M
E

L
o
g

R
G
D
P

p
c

H
O
S
T

L
o
g

R
G
D
P

p
c

H
O
M
E

E
N
R
_

T
E
R

H
O
S
T

E
N
R
_

T
E
R

H
O
M
E

P
A
_

R
A
T

H
O
S
T

P
A
_

R
A
T

H
O
M
E

H
T
X
_

S
H

H
O
S
T

H
T
X
_

S
H

H
O
M
E

T
D
IS
T

L
o
g
D
IS
T

1

C
O
M
L
A
N
G

�0
.0
9
6

1

C
O
M
B
O
R
D

�0
.4
5
4

0
.3
0
0

1

L
o
g
R
G
D
P

H
O
S
T

0
.2
3
0

0
.0
9
4

0
.0
0
0

1

L
o
g
R
G
D
P

H
O
M
E

0
.3
0
8

0
.0
9
6

0
.0
0
1

�0
.0
2
6

1

L
o
g
R
G
D
P

p
c

H
O
S
T

0
.1
3
3

0
.1
3
8

�0
.0
4
5

0
.5
0
2

�0
.0
1
2

1

L
o
g
R
G
D
P

p
c

H
O
M
E

�0
.0
9
2

0
.1
0
2

0
.0
2
2

�0
.0
1
1

0
.2
8
8

�0
.0
1
5

1

E
N
R
_
T
E
R

H
O
S
T

0
.1
5
7

�0
.0
5
2

�0
.0
6
1

0
.1
9
7

�0
.0
0
4

0
.2
5
6

�0
.0
1
8

1

E
N
R
_
T
E
R

H
O
M
E

�0
.0
7
4

�0
.0
5
3

�0
.0
1
0

�0
.0
0
3

0
.0
6
4

�0
.0
2
9

0
.5
0
6

0
.0
4
0

1

P
A
_
R
A
T

H
O
S
T

�0
.0
4
8

�0
.0
3
2

0
.0
1
0

0
.0
7
4

0
.0
0
1

0
.0
6
8

�0
.0
0
7

0
.3
3
5

0
.0
5
5

1

P
A
_
R
A
T

H
O
M
E

�0
.1
1
3

�0
.0
3
2

0
.0
3
0

0
.0
0
0

0
.0
8
7

�0
.0
2
1

0
.2
2
3

0
.0
5
2

0
.4
1
4

0
.0
4
2

1

H
T
X
_
S
H

H
O
S
T

�0
.0
3
3

0
.0
8
5

�0
.0
1
4

�0
.1
4
4

0
.0
0
5

0
.1
3
1

0
.0
0
4

�0
.0
6
7

�0
.0
1
4

�0
.0
1
2

�0
.0
1
1

1

H
T
X
_
S
H

H
O
M
E

�0
.0
5
3

0
.0
7
7

0
.0
0
0

0
.0
0
4

�0
.0
4
0

0
.0
0
4

0
.1
8
9

�0
.0
1
0

0
.0
3
4

�0
.0
0
4

0
.0
5
6

�0
.0
2
0

1

T
D
IS
T

�0
.0
0
9

0
.1
7
5

0
.1
0
0

0
.2
8
8

0
.3
4
7

0
.1
6
4

0
.2
0
0

0
.1
8
9

0
.1
5
6

0
.0
7
7

0
.1
1
2

0
.0
3
3

0
.0
7
0

1

10 Determinants of International R&D Activities: Evidence from a Gravity Model 195



Table 10.4 Descriptive statistics

Variable Obs Mean Std. Dev. Min Max

Log RDij 1,054 2.47 2.89 �4.61 8.78

Log distance 1,054 7.34 1.09 4.09 9.32

Common language 1,054 0.09 0.29 0.00 1.00

Common border 1,054 0.15 0.36 0.00 1.00

Log RGDP HOST 1,054 12.40 1.72 8.73 16.23

Log RGDP HOME 1,054 13.03 1.56 9.04 16.23

Tertiary enrolment rate HOST 1,054 60.70 13.22 24.50 93.80

Tertiary enrolment rate HOME 1,054 61.28 16.55 9.94 96.10

Ratio patent applications residents HOST 1,054 4.91 3.97 0.03 23.92

Ratio patent applications residents HOME 1,054 4.83 3.56 0.04 28.75

Share high-tech exports HOST 1,054 4.43 3.24 0.24 16.19

Share high-tech exports HOME 1,054 4.83 3.59 0.14 32.76

Technological distance 1,054 0.65 0.17 0.10 0.93

Table 10.5 Descriptive statistics – with levels of economic development

Variable Obs Mean Std. Dev. Min Max

Log RDij 1,054 2.47 2.89 �4.61 8.78

Log distance 1,054 7.34 1.09 4.09 9.32

Common language 1,054 0.09 0.29 0.00 1.00

Common border 1,054 0.15 0.36 0.00 1.00

Log RGDP HOST 1,054 12.40 1.72 8.73 16.23

Log RGDP HOME 1,054 13.03 1.56 9.04 16.23

Log RGDP pc HOST 1,054 9.51 0.75 7.46 10.62

Log RGDP pc HOME 1,054 9.97 0.56 6.12 10.87

Tertiary enrolment rate HOST 1,054 60.70 13.22 24.50 93.80

Tertiary enrolment rate HOME 1,054 61.28 16.55 9.94 96.10

Ratio patent applications residents HOST 1,054 4.91 3.97 0.03 23.92

Ratio patent applications residents HOME 1,054 4.83 3.56 0.04 28.75

Share high-tech exports HOST 1,054 4.43 3.24 0.24 16.19

Share high-tech exports HOME 1,054 4.83 3.59 0.14 32.76

Technological distance 1,054 0.65 0.17 0.10 0.93
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Chapter 11

Joint Knowledge Production in European

R&D Networks: Results from a Discrete

Choice Modeling Perspective

Florian Reinold, Manfred Paier, and Manfred M. Fischer

Abstract The objective of this study is to explore the determinants of inter-

organizational knowledge generation within European networks of R&D collabo-

ration. It is argued that social capital is a key determinant for successful knowledge

generation. Thus, factors that influence the development of social capital like

geographical separation, or collaboration duration and intensity are expected to

have an impact on inter-organizational knowledge generation. Determinants of

inter-organizational knowledge generation are investigated by casting a binary

response model in the form of a latent regression – index function model. Units

of analysis are dyads of organizations that jointly participated in projects of the

Fifth EU Framework Programme [FP5]. The data used in this study derives from a

survey among FP5 participants and the EUPRO database.

Our findings suggest that crossing national border has a significantly positive

rather than negative effect on scientific knowledge generation [measured in terms

of reported co-publication activity]. This can be attributed to the participation rules

and proposal selection procedures of the Framework Programmes. Another impor-

tant result is that university dyads have the highest probability not only to generate

scientific knowledge jointly, but also to jointly generate knowledge that is com-

mercially relevant. In contrast, industry dyads show a low probability for both types
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of knowledge generation. This result is probably due to the fact that inter-organi-

zational knowledge generation entails disclosure of knowledge, which is actually a

task of universities but problematic for industry organizations.

11.1 Introduction

New growth theory suggests that innovation is the major engine of economic

growth and competitiveness (see, for instance, Romer 1990). Since scientific and

technological knowledge is regarded as the major input for innovation, the

competiveness of an economy depends on its ability to generate new knowledge.

Generation of knowledge is a social process and, therefore, the performance of an

economy to generate knowledge crucially depends on successful cooperation

between involved actors not only on the individual, but also on the organizational

level (see, for instance, Lundvall 1992). Since markets lack the necessary long-term

commitment for the transfer of tacit knowledge, networks are an increasingly

important mode of cooperation for inter-organizational R&D activities (DeBresson

and Amesse 1991; Powell and Grodal 2005). A major R&D network in Europe is

the network created by the European Framework Programmes [FPs]. The FPs are

the main instrument of the EU’s R&D policy and are designed to support collab-

orative R&D projects including actors from distinct organizational types and

different countries. Recently, several studies have been published in regard to

R&D partner choices (Autant-Bernard et al. 2007; Paier and Scherngell 2011;

Scherngell and Barber 2009) and joint knowledge generation (Hoekman

et al. 2009) in Europe and in the FPs.

This study contributes to the existing literature by investigating the determinants

of inter-organizational knowledge generation within the FP network. By using

dyads of organizations that jointly participated in a project of the Fifth Framework

Programme [FP5] as units of analysis, this study distinguishes itself from previous

studies by focusing on the organizational level and not on the regional level. The

data for carrying out this study is taken from a survey among FP5 participants and

the EUPRO database. Determinants of inter-organizational knowledge generation

are investigated by employing a binary response model derived from a latent

regression.

Although FP projects are supposed to generate scientific knowledge as a direct

output of the project, it is stipulated by the participation rules that the results should

be exploitable for commercial purposes. Thus, this study distinguishes between two

types of inter-organizational knowledge generation: scientific knowledge and com-

mercially relevant knowledge generation. Scientific knowledge generation is mea-

sured in terms of whether or not co-authored publications exist, while commercially

relevant knowledge generation refers to the fact that co-owned commercially

relevant outcome [e.g. co-owned patents] is reported.

The remainder of this chapter is organised as follows. Section 11.2 provides an

overview of the goals, participation rules and proposal selection procedures of the
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FPs because it can be assumed that they have an influence on the pattern of inter-

organizational knowledge generation. Section 11.3 identifies social capital and the

ability to coordinate researchers from different organizations as key determinants of

inter-organizational knowledge generation. Considerations are made how geo-

graphical separation and different organizational types of cooperation affect social

capital and coordination problems and thereby influence inter-organizational

knowledge generation. Section 11.4 describes the sample and the construction of

variables in detail. Section 11.5 outlines the econometric model and presents the

estimation results. Section 11.6 concludes.

11.2 The EU Framework Programmes

The FPs are recurrent mid-term research programmes that subsidy collaborative

R&D projects linking partners from different countries and organizational types.

The overall goal of the FPs is to strengthen the scientific and technological bases of

European industry and to enhance its international competitiveness. Moreover, the

FPs aim at fostering European market integration and regional income convergence

by establishing common technological standards, increasing the mobility of

researchers and promoting the dissemination of knowledge. Thus, the FPs can be

seen as an important instrument for the implementation of EU policy beyond the

area of science and technology (Stajano 2006, pp. 289–305). Since its establishment

in 1984, seven FPs have been launched. Despite shifting thematic areas and

instruments, the fundamental rationale of the FPs has remained unchanged, namely

to support collaborative, pan-European research that involves different actors from

scientific and the private sector (Roediger-Schluga and Barber 2007). This study

relies on the Fifth Framework Programme [FP5], 1999–2002.

There is a set of participation rules stipulated by the European Commission,

which shapes the structure of collaboration within FP5. The majority of proposals

were subject to the following participation rules (European Council 1998). First,

proposals had to be handed in by self-organised consortia. Second, the consortia

had to consist of at least two mutually independent legal entities. Third, the

consortia had to include legal entities from at least two different member states or

one member state and one associated state.

Proposals handed in were evaluated by a panel of independent experts on the

basis of a set of criteria defined by European Council decision. The final decision

about which projects were funded and which were rejected rested with the Euro-

pean Commission. Proposals should have met following criteria (European Com-

mission 2001). First, high quality of research and high degree of innovation;

second, added-value by carrying out the project at the European level and by

combining complementary expertise of different organizational types; third, con-

tribution to one or more EU policies, e.g. cohesion, or the integration of new

member states into the European Research Area; fourth, the usefulness and range

of applications, the quality of the exploitation plans and dissemination strategies
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for the expected results; and finally the quality of the partnership, i.e. adequate

complementarity of the partners and a reasonable division of tasks within the

consortium.

Since the FPs involve subsidies for organizations from the private sector, there is

a potential for thwarting the competition policy of the EU. In order to avoid

distortion of the internal market, the FPs are restricted to pre-competitive research,

i.e. research that is sufficiently distant to the market in order to avoid distortion of

competition on product markets (Guzetti 1995, pp. 77–78). Some studies came to

the conclusion that organizations can materialise commercially relevant outcome

from participating in the FPs already in a short time after the termination of a FP

project because they link the FP project with other in-house projects (Guy

et al. 2005; Luukkonen and Hälikkä 2000; Matt and Wolff 2003). Moreover,

exploitation-related goals were the major motivation of industry organizations for

participating in FP5 (Guy et al. 2005). Thus, this study will not only focus on

scientific knowledge as an outcome of explorative research but also on commer-

cially relevant knowledge as an outcome of exploitative research.

11.3 Potential Determinants of Inter-Organizational

Knowledge Generation

Inter-organizational knowledge generation primarily involves sharing and combin-

ing knowledge that is held by [at least two] different organizations (Moran

and Ghoshal 1996). Two conditions have to be fulfilled in order that inter-organi-

zational knowledge generation in networks can take place. First, the organizations

must decide that they want to enter into a network relation in order to share and

combine knowledge. Second, knowledge has to be successfully shared and com-

bined so that novel knowledge [or a novel combination of already existing pieces of

knowledge] may be generated. The first condition boils down to the question about

determinants of collaboration choices, which has been already investigated for the

FPs (see, for instance, Autant-Bernard et al. 2007; Paier and Scherngell 2011), the

investigation of the second condition is the topic of this study.

Successful sharing and combining of knowledge depends on the willingness of

organizations to share knowledge and on the capacities of organizations to absorb

knowledge. The willingness to share and the capacity to absorb knowledge is

positively influenced by social capital. Social capital refers to resources that evolve

from networks of relationships over time by repeated interactions (Nahapiet and

Ghoshal 1998). Since social capital exists only between individuals, it cannot be

appropriated by one individual but is collectively owned (Coleman 1988). Social

capital is conducive for sharing and absorbing knowledge by providing resources

like trust, shared norms, shared goals, shared language and shared mental models.

Von Hippel (1987) observed in his qualitative study about US steel mini-mill

producers that knowledge was shared even with competitors because it was trusted
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that this will be rewarded in the long run by reciprocal behaviour. A quantitative

analysis about R&D consortia in Taiwan conducted by Lin et al. (2009) provides

evidence that trust, shared norms and shared goals influence knowledge transfer

positively.

Since transfer of tacit knowledge is costly, not all knowledge that might be

necessary for inter-organizational knowledge generation is shared (Grant 1996). A

great part of the necessary knowledge is combined by coordinating people, in

whom tacit knowledge is embedded, to build up inter-organizational capabilities

for knowledge generation. Building up inter-organizational capabilities for knowl-

edge generation is difficult since this requires complex modes of coordination.

Simple modes of coordination like coordination by rules and standards or coordi-

nation by planning are not feasible because generation of knowledge involves high

uncertainty and task interdependence (Kline and Rosenberg 1986; van de Ven

et al. 1976). Thus employees have to be coordinated by complex modes of coop-

eration like mutual adjustment and group meetings (Grant 1996). Resources derived

from social capital like shared goals or shared understandings facilitate complex

coordination problems (Hämäläinen and Schienstock 2001).

11.3.1 Collaboration Duration and Intensity

Since social capital and common capabilities are built up by repeated interactions, it

can be expected that duration of collaboration and the intensity of collaboration are

crucial determinants for successful inter-organizational knowledge generation.

11.3.2 Geographical Separation

It is widely believed that geographical separation is detrimental to inter-organiza-

tional knowledge generation for three reasons (see Boschma 2005). First, geograph-

ical separation complicates repeated face-to-face communication which is regarded

as important for the development of social capital. Second, geographical separation

is often negatively correlated with cultural proximity which provides potential

research partners with an already existing stock of social capital in the form of

shared languages and shared norms. Third, geographical separation also makes

complex coordination more difficult since it complicates mutual adjustment and

group meetings (van de Ven et al. 1976). The majority of studies confirm the

negative relationship between geographical separation and the occurrence of

R&D collaboration (Katz 1994; LeSage et al. 2007; Maggioni and Uberti 2009;

Paier and Scherngell 2011; Scherngell and Barber 2009).

Some authors question that the proposition about the negative relationship

between geographical separation and inter-organizational knowledge generation

is universally valid. Bathelt et al. (2004) argue that firms are only innovative in the
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long run if they maintain a balance between geographically separated and geo-

graphically close R&D collaborations because geographical separated collabora-

tions are necessary to acquire new knowledge while close collaborations are

necessary to exploit new knowledge. Torre and Rallet (2005) point to the fact

that organizations need not be co-localised for close R&D collaboration since

people are mobile. Often, co-localisation is not necessary for the whole duration

of a joint research project and short- or medium term visits are sufficient. Moreover,

large organizations can afford to relocate a part of the R&D staff for the duration of

joint collaboration projects. Another differentiated view was presented by

Moodysson et al. (2008). They distinguish between two modes of inter-organiza-

tional knowledge generation: synthetic knowledge generation and analytical

knowledge generation. While geographical separation has a negative influence on

synthetic knowledge generation, it is less detrimental to analytical knowledge

generation. Analytical knowledge generation is highly formalized and is mainly

carried out by a process of theory-led deduction and subsequent hypothesis testing.

Since the primary type of knowledge involved is know-why, primarily codified

knowledge is exchanged. Often, activities related to analytical knowledge genera-

tion are only of sequential interdependence which entails only simple coordination

problems. An example for inter-organizational analytical knowledge generation is

the conducting of a clinic study by a research hospital on behalf of a pharmaceutical

research company.

Although geographical separation might complicate the development of social

capital and inter-organizational capabilities, we argue that the design of the FPs

offset the negative influence of geographical separation on inter-organizational

knowledge generation for four reasons. First, the division of labour in the FPs is

highly formalized because of pre-defined work packages, ex ante agreements on

meetings and milestones (Matt and Wolff 2003). Thus, it can be expected that

research conducted within the FPs resembles an analytical mode of knowledge

generation. Second, the participation rules and goals of the FPs ensure that the FPs

are an explorative and an international research network (see Sect. 11.2). Third,

since the support of the mobility of researchers is one of the main instruments of the

FPs, it can be expected that increased mobility of researchers substitute for a lack of

co-location of organizations. Fourth, the legal framework provided by the FPs

partly substitutes for a lack of cultural proximity and social capital (Luukkonen

2001).

11.3.3 Organizational Types of Cooperation

One objective of the FPs is to stimulate collaborations between the scientific sector

[in particular universities and public research organizations] and the private sector

[in particular R&D laboratories of industry organizations]. Since the scientific

sector and the private sector carry out complementary tasks within the innovation

process, interaction between the scientific sector and the private sector is regarded
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as conducive for innovation and economic development (see, for instance, Mowery

and Rosenberg 1993). However, collaboration between the scientific sector and the

private sector is often difficult since the two sectors pursue different goals and share

different cultures (Ponds et al. 2007). A major aim of scientific organizations is to

generate new knowledge and share this knowledge with the scientific community

by publishing in order to increase reputation. Private organizations, by contrast,

regard knowledge generation as a means to generate profit by reaping

Schumpeterian rents, and are, therefore, highly interested in keeping knowledge

secret. Moreover, they are to a lesser degree than scientific organizations interested

in explorative research activities and are more interested in exploiting existing

knowledge. Thus, although collaborations between scientific and private organiza-

tions are important for innovation and economic development, these collaborations

can be expected to have a low productivity for inter-organizational knowledge

generation because of differences in goals and culture.

11.4 Variables and Data

Two data sources are used in this study, namely, the EUPRO database and a survey

among FP5 participants conducted by Austrian Institute of Technology in 2007.

The EUPRO database is constructed and maintained by revising and standardizing

raw data obtained from the CORDIS project database. It contains detailed infor-

mation on funded projects and project participants of the EU Framework

Programmes (for the first six see Barber et al. 2008). The survey restricted its

population to projects involving less than 21 participants, which applies to roughly

97 % of all collaborative projects in FP5. 12,892 questionnaires were sent by email,

from which 8,534 were received. The survey resulted in 1,686 valid questionnaires.

Because a full data set in the EUPRO database is missing for 472 cases, only 1,214

questionnaires are used in this study.

Since the objective of this study is to explore the factors that are responsible for

the fact that collaboration results in successful inter-organizational knowledge

generation, the units of analysis has to be a form of inter-organizational collabora-

tion. Following previous studies, collaboration is considered if two organizations

participate in the same FP5 project (see, for instance, Autant-Bernard et al. 2007;

Paier and Scherngell 2011). Thus, the units of analysis in this study are dyads of

organizations that jointly participated in a FP5 project. The full sample consists of

7,776 dyads, which are formed by a set 3,343 distinct organizations that collabo-

rated in 861 distinct FP5 projects.

The area of analysis is formed by 23 countries. All EU members at the time of

the FP5 [i.e. the EU15] as well as the Central East European candidate countries

that joined EU in 2004 are included. Table 11.4 in the Appendix gives an overview

about the distribution of distinct organizations and participations, disaggregated by

country.
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11.4.1 Dependent Variables

Measuring knowledge generation is difficult since generated knowledge exists

initially in the mind of those who generated it and is thus not directly observable

(Fischer 2001). However, if the generated knowledge is sufficiently valuable, one

can expect that it materialises in observable outcomes. This study relies on survey

questions to capture outcomes of inter-organizational knowledge generation

through a dichotomous variable. Thus, joint scientific knowledge generation is

measured in terms of the occurrence of co-authored publications, and joint com-

mercially relevant knowledge generation is measured in terms of co-owned com-

mercially relevant outcome (e.g. co-owned patents). Each fifth dyad reported co-

authored publications; joint commercially relevant knowledge generation is by far

less common.

11.4.2 Independent Variables

In Sect. 11.3, we have argued that collaboration duration, collaboration intensity,

geographical separation and organizational types of cooperation influence inter-

organizational knowledge generation. Two variables are constructed to account for

the duration that is necessary for developing social capital: project duration and

previous collaboration. Project duration is measured in terms of the duration of the

FP5 project [in months] in which the members of the dyad jointly participated.

Previous collaboration is taken as a dummy variable into account that equals one if

the partners of the dyad had collaborated together in a previous FP project. Intensity

of collaboration is represented by the variable important research collaboration,

with information from the survey, and is designed as a dummy variable that equals

one if at least one dyad partner classified the other as an important research partner.

Two types of geographical barriers are included as independent variables: the

existence of national borders and of EU’s external border, designed as dummy

variables. The variable national border equals one if the organizations forming the

dyad are located in different countries. The variable EU’s external border equals

one if one organization of the dyad is located in the EU15 and the other in a Central

East European candidate country.

The sample includes four organizational types: industry organizations [including

consulting firms], universities, public research organizations and government orga-

nizations. Since there are few government organizations, only dummy variables for

combinations of universities, research organizations and industry organizations

were created. Thus, there are six dummy variables: university – university, univer-

sity – research organization, industry organization – university, industry organiza-

tion – industry organization, industry organization – research organization, research

organization – research organization. Dyads that include government organizations

take on the role of a default dummy.
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11.4.3 Control Variables

Collaboration is measured in terms of joint FP project participation. This measure-

ment approach works well for small FP projects, but in large FP projects it is

unlikely that every participant collaborated directly with every participant

(Fürlinger 2010). In order to control for this shortcoming, the variable project

size, measured in terms of number of project participants, is included as a control

variable.

Table 11.1 summarises descriptive statistics about the variables. See also the

Appendix for the definition of the variables. Correlation analysis of the independent

variables revealed a phi coefficient of �0.45 between the intent to generate

scientific knowledge and the intent to generate commercially relevant knowledge.

All other correlations were far less problematic.

Although the focus of this study is on relational characteristics, internal capac-

ities of the organizations forming the dyad might also have an influence on

knowledge generation. Since no information like budget or R&D personnel is

available, proxy variables had to be used. EU funding devoted to the FP5 project,

in which the organizations of the dyad jointly participated, serves as proxy for the

monetary resources available for generating scientific or commercially relevant

knowledge. The commitment of an organization to scientific or commercially

relevant knowledge generation may have also an impact on the resources available

for these activities. Thus, we include two further dummy variables that take the

organizations’ motive for participating in FP5 into account. The first dummy

variable equals one if the intent of at least one member of the dyad was to generate

scientific knowledge. The second dummy variable equals one if the intent of at least

one member of the dyad was to generate commercially relevant knowledge. Both

dummy variables were taken from the survey.

11.5 The Econometric Model and Estimation Results

Since the dependent variable y* [inter-organizational knowledge generation] is

measured in terms of its dichotomous realisations y [observable outcomes], the

appropriate econometric model is a binary response model that can be derived from

a latent regression – index function model (Verbeek 2004, pp. 190–193). By

assuming a linear additive relationship between inter-organizational knowledge

generation and a set of explanatory variables we obtain the following latent

regression:

y� ¼ βXþ ε ð11:1Þ

where y* denotes a n-by-1 vector of latent indices of knowledge generation for

n ¼ 7,776 dyad observations, X denotes a n-by-K matrix including a constant and
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K-1 explanatory variables, β denotes a K-by-1 vector of parameters to be estimated,

and ε a n-by-1 random error term symmetrically distributed about the mean. In this

context, βX is called the index function (Greene 2008, p. 776).

Inter-organizational knowledge generation is not directly observable but its

outcomes. Thus, we define a link between inter-organizational knowledge genera-

tion y* and the binary outcomes y.

y ¼ 1 if y� > α
0 if y� � α

�
ð11:2Þ

where α is a threshold that has to be surpassed in order that the generated knowledge
results in an observable outcome. Since the value of the threshold has only an

influence on the value of the intercept in the regression model, the threshold value is

set equal zero for sake of simplicity (Greene 2008, p. 776).

Binary response models derived from a latent regression explain the probability

of an event occurring dependent on the explanatory variables of the latent regres-

sion [X].

P y ¼ 1
�� X

� � ¼ F βXð Þ ð11:3Þ

where F(.) denotes the cumulative distribution function of ε. Consequently, the
latent variable approach leads to a binary choice model whose form depends upon

Table 11.1 Descriptive statistics for the variables used

Project duration

[in months]

Project size [number of

project members]

EU project funding

[in million €]

Minimum 4 2 0.01

First quartile 24 8 0.41

Median 36 10 0.76

Third quartile 36 13 1.03

Maximum 60 20 3.23

Mean 31.34 10.74 0.80

Standard deviation 8.49 3.58 0.48

Frequency of the dummy variables in the sample

Previous collaboration (yes ¼ 1) 22 %

Important research collaboration (yes ¼ 1) 33 %

National border (yes ¼ 1) 81 %

EU’s external border (yes ¼ 1) 8 %

University – university (yes ¼ 1) 13 %

University – research organization (yes ¼ 1) 15 %

Research organization – research organization (yes ¼ 1) 7 %

Industry organization – university (yes ¼ 1) 18 %

Industry organization – research organization (yes ¼ 1) 18 %

Industry organization – industry organization (yes ¼ 1) 22 %

Intent to generate scientific knowledge (yes ¼ 1) 58 %

Intent to generate commercially relevant knowledge (yes ¼ 1) 46 %
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the distribution that is assumed for ε (Verbeek 2004, p. 192). Since we assume

ε ~ N(0,1), a probit model is specified:

P y ¼ 1
�� X

� � ¼ Φ βXð Þ ¼
ðβX

�1

1ffiffiffiffiffi
2π

p exp � 1

2
t2

� �
dt ð11:4Þ

where Φ(.) denotes the standard normal cumulative distribution function. The

parameter estimates are derived by maximum-likelihood estimation (Greene

2008, pp. 777–779).

11.6 Estimation Results

Table 11.2 presents the maximum likelihood [ML] parameter estimates for inter-

organizational knowledge generation; asymptotic standard errors are given in

parentheses. For scientific knowledge generation three different models were esti-

mated. The basic version [model 1] includes the full sample of 7,776 dyads, while

model 2 uses a sample of 2,627 dyads, which consist only of universities and

research organizations, and model 3 uses a sample of 4,729 dyads involving at

least one industry organization. The model for commercially relevant knowledge

generation uses the full sample of 7,776 dyads. The bottom of Table 11.2 provides

various model fit measures. The likelihood ratio statistic that compares the esti-

mated models with the constant-only null model indicates the significance of all

models at the 0.01 significance level.

As expected, intensity and duration of collaboration increase the probability of

both types of knowledge generation. Holding all other variables at their sample

mean, previous collaboration increases the probability that inter-organizational

scientific [commercially relevant] knowledge generation occurs by 8.3 [0.6]

percentage points. An increase of the project duration from 4 months [the mini-

mum in the sample] to 60 months [the maximum in the sample] increases the

probability that inter-organizational generation of scientific knowledge and com-

mercially relevant knowledge occurs by 13 and 5.3 percentage points, respec-

tively. Thus, relative to project duration, previous collaboration is less important

for generating commercially relevant knowledge than for generating scientific

knowledge.

The classification of a dyad as an important research collaboration by at least one

member of the dyad was used as a proxy for collaboration intensity. Table 11.2

shows that important research collaboration is by far the most important determi-

nant for scientific knowledge generation. If a dyad is classified to indicate important

collaboration the probability to generate scientific knowledge increases by 23.9

percentage points, on average. Important research collaboration has also a strong

influence on commercially relevant knowledge generation. The classification of a
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dyad partner as an important research partner increases the probability that the dyad

generates commercially relevant knowledge by 1.8 percentage points.

University–university dyads have the highest probability of generating scientific

knowledge, while dyads that involve only industry organizations the lowest.

Switching from a university–university dyad to a dyad that includes a research

organization and an industry organization decreases the probability of co-publish-

ing by 10.5 percentage points. The only two dyad types that have a significant [and

positive] impact on generation of commercially relevant knowledge are university-

university dyads and dyads that consist of a university and a research organization.

Thus, dyads involving industry organizations do not have a significant influence on

commercially relevant knowledge generation.

How can it be explained that industry organizational cooperation is not at the

forefront of commercially relevant knowledge generation? A likely explanation is

that industry organizations do generate commercially relevant knowledge, as found

by several studies (Guy et al. 2005; Luukkonen 2001), but not inter-organization-

ally because they fear negative knowledge spillovers of critical commercially

relevant knowledge. Since a priori it is not known which knowledge will be useful

to generate new knowledge, more knowledge is inevitably shared than necessary.

The goal of industry organizations may be not to generate knowledge inter-orga-

nizationally in FP projects, but instead to pursue unilateral learning strategies to

reduce knowledge spillovers and to maximise the benefit from FP participation (see

Matt and Wolff 2003).

In Sect. 11.3 it has been argued that crossing national border and EU’s external

border should not have a significant impact on inter-organizational knowledge

generation since the negative influence of geographical separation is offset by the

participation rules of the FPs. This serves to be valid for commercially relevant

knowledge generation, but not for scientific knowledge generation because both

border dummies are significantly positive, but the effect is relatively small. Holding

all other covariates at their sample means, crossing national border increases the

probability of a dyad to generate scientific knowledge inter-organizationally only

by two percentage points. Nevertheless, how can this small but significantly

positive influence of crossing national border be explained?

One possible explanation is that the factors described in Sect. 11.3 that were

expected to offset the negative influence of geographical separation on inter-

organizational knowledge generation appear stronger than expected for scientific

knowledge generation. Another possible explanation is that the significant and

positive national border dummy can be attributed to collaborations within the

scientific sector, while it is expected that industry organizations do not show an

inclination to co-author publications with foreign organizations. This explanation is

based on the consideration that researchers of universities and research organiza-

tions are more accustomed to work internationally and bound together by a com-

mon culture and shared mental models. As can be seen by the different significance

of the coefficients of national border in models 2 and 3, inter-organizational

generation of scientific knowledge is less sensitive to the presence of national
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borders within the scientific sector than between the scientific and the industrial

sector.

An unexpected result is that the coefficient of crossing EU’s external border is

insignificant in model 2 but significantly positive in model 3. In order to shed more

light on this result we have run a regression for scientific knowledge generation

including only dyads as observations that cross EU’s external border. The empirical

results of this model are presented in Table 11.3. It is striking that a dyad that

includes an industry organization located in a candidate country and a research

organization located in a member state has the highest impact on inter-organiza-

tional generation of scientific knowledge among all organizational types of coop-

eration since this kind of cooperation has only a medium impact in the full sample

model. This result can probably be attributed to the desire of industry organizations

in candidate countries to catch up with their counterparts in member states. A

research organization as partner can be regarded as a good choice since they are

more applied oriented than universities but less reluctant to share their knowledge

than industry organizations.

11.7 Summary and Conclusions

The objective of this study was to explore the determinants of inter-organizational

knowledge generation in the network created by the FPs. It was argued that social

capital is a key determinant for inter-organizational knowledge generation since

social capital provides necessary resources [e.g. trust, shared language, shared

mental models and shared goals] for knowledge exchange and facilitates the

development of inter-organizational capabilities for knowledge generation. Thus,

it was considered that factors influencing social capital are key determinants of

inter-organizational knowledge generation. In Sect. 11.3, four possible determi-

nants were identified: duration of collaboration, intensity of collaboration, geo-

graphical separation and the organizational types involved in inter-organizational

knowledge generation.

A binary response model was derived from a latent regression in order to

measure the impact of the above determinants on inter-organizational knowledge

generation. Dyads of organizations that jointly collaborated in a FP5 project were

used as units of analysis. Since inter-organizational knowledge generation is a

latent process that is not directly measurable, observable outcomes of inter-orga-

nizational knowledge generation were used as proxies. The occurrence of a co-

authored publication was used to measure scientific knowledge generation while

generation of commercially relevant knowledge was measured in terms of co-

owned commercially relevant outcome, like co-owned patents.

As expected, the results show that project duration and previous collaboration

have a positive and significant impact on inter-organizational generation of
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scientific and commercially relevant knowledge. Intensity of collaboration has the

strongest positive impact on scientific knowledge generation and has also a strong

and positive influence on the generation of commercially relevant knowledge.

Typically, geographical separation is expected to have a negative influence on

inter-organizational knowledge generation because it curbs the development of

social capital. In this study we expected that national border and EU’s external

border have an insignificant influence on inter-organizational knowledge genera-

tion because the negative effect of geographical separation on inter-organizational

Table 11.3 ML estimates of the model for inter-organizational generation of scientific knowledge

across EU’s external border

Variables

Coefficient estimates

[standard error in parentheses]

Constant �1.265*** (0.456)

Collaboration duration and intensity

Previous collaboration 0.294* (0.164)

Project duration [in months] 0.005 (0.010)

Important research collaboration 1.017*** (0.135)

Organizational types of cooperation

Industry organization (C) – research

organization (EU)

0.740** (0.325)

University (C) – university (EU) 0.576** (0.290)

University (C) – industry organization (EU) 0.546* (0.297)

University (C) – research organization (EU) 0.543* (0.312)

Research organization (C) – university (EU) 0.300 (0.304)

Research organization (C) – research

organization (EU)

0.041 (0.313)

Research organizations (C) – industry

organization (EU)

�0.148 (0.309)

Industry organization (C) – university (EU) �0.102 (0.413)

Industry organization (C) – industry

organization (EU)

�0.430 (0.345)

Control variables

Project size [number of participants] �0.078*** (0.022)

Intent to generate scientific knowledge 0.297* (0.156)

Intent to generate commercially relevant knowledge �0.052 (0.154)

EU project funding [in millions of euros] 0.421*** (0.158)

Log-likelihood �262.700

BIC 0.978

Likelihood ratio test (df ¼ 16) 157.041***

Dependent variable is inter-organizational scientific knowledge generation. Probit transformation

of the dependent variable was used. The model includes a sample of 650 dyads that cross EU’s

external border. The default dummy for organizational types of cooperation are dyads including

government organizations. (C) denotes that the corresponding organization was located in a

candidate country; (EU) denotes that the corresponding organization was located in the EU; ***

significant at the 0.01 significance level, ** significant at the 0.05 significance level, * significant at

the 0.1 significance level

11 Joint Knowledge Production in European R&D Networks 215



knowledge generation is offset by the participation rules and proposal selection

procedures of the FPs. This assumption was confirmed for commercially relevant

knowledge generation but not for scientific knowledge generation.

An unexpected result is that dyads involving industry organizations are not

significant in regard to generation of commercially relevant knowledge. This result

can probably be explained by the fact that inter-organizational knowledge genera-

tion entails disclosure of knowledge, which is problematic for industry organiza-

tions. As expected, dyads involving universities and research organizations are at

the forefront in regard to inter-organizational scientific knowledge generation.

The results of this study are in accordance with the goals of the Framework

Programmes. Inter-organizational knowledge generation is not curbed by national

border. On the contrary, universities and research organizations use the FPs rather

for international than national scientific knowledge generation. Moreover, as

intended by the European Commission, the FPs are an appropriate instrument to

introduce new members into the European Research Area. Fears that the FPs

contradicts the competition rules of the internal market can be allayed since

industry-industry collaborations in the FPs do not have a significant influence on

inter-organizational commercially relevant knowledge generation.

Acknowledgements This chapter reports results of research carried out in the framework of the

Innovation Economics Vienna – Knowledge and Talent Development Program.
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Appendix

Table 11.4 Distribution of

organizations and participants

included in the sample by

country

Country Organizations (in %) Participants (in %)

Germany 14.9 17.5

Italy 13.6 13.4

United Kingdom 13.2 13.1

Spain 11.9 10.2

France 11.7 11.9

Greece 4.4 4.4

Netherlands 4.2 5.1

Belgium 3.7 3.4

Sweden 3.3 3.7

Portugal 3.1 2.5

Austria 2.8 3.0

Denmark 2.6 2.4

Finland 2.1 2.6

Poland 1.8 1.6

Ireland 1.6 1.3

Czech Republic 1.6 1.2

Hungary 1.3 1.0

Slovenia 0.6 0.5

Slovakia 0.4 0.4

Lithuania 0.3 0.3

Latvia 0.3 0.2

Luxembourg 0.2 0.2

Estonia 0.2 0.1
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Table 11.5 Definitions of variables

Variable name

Scale of

measurement Description

Data

source

Dependent variables

Generation of scien-

tific knowledge

Dichotomous 1 if the members of the dyad co-authored a

scientific publication

Survey

Generation of com-

mercial knowledge

Dichotomous 1 if the members of the dyad co-own commer-

cially relevant outcome

Survey

Collaboration duration and intensity

Project duration Ordinal Duration of the project in which the members of

the dyad jointly participated (months)

EUPRO

Previous collaboration Dichotomous 1 if the two organizations of the dyad have

already collaborated in previous FPs

Survey

Important research

collaboration

Dichotomous 1 if at least one member of the dyad stated that

the other was an important collaborator

Survey

Geographical separation

National border Dichotomous 1 if the organizations forming the dyad are

located in different countries

EUPRO

EU’s external border Dichotomous 1 if one organization is located in the EU15 and

the other in a CEE candidate country

EUPRO

Combinations of organization types

University – university Dichotomous 1 if both organizations of the dyad are

universities

EUPRO

University – research Dichotomous 1 if one organization is a university and the

other is a research organization

EUPRO

Industry– university Dichotomous 1 if one organization is a university and the

other is an industry organization

EUPRO

Industry– industry Dichotomous 1 if both organizations are industry

organizations

EUPRO

Industry– research Dichotomous 1 if one organization is an industry organization

and the other a research organization

EUPRO

Research– research Dichotomous 1 if both organizations of the dyad are research

organizations

EUPRO

Control variables

Project size Ordinal Number of participants of the project EUPRO

Intent to generate sci-

entific knowledge

Dichotomous 1 if the motivation of at least one member of the

dyad was scientific research

Survey

Intent to generate

commercial

knowledge

Dichotomous If the motivation of at least one member of the

dyad was commercial knowledge

Survey

EU project funding Continuous EU funds (measured in million EUR) allocated

to the project

EUPRO
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Chapter 12

Multilateral R&D Collaboration: An ERGM

Application on Biotechnology

Çilem Selin Hazir

Abstract This chapter presents an empirical study on formation of multilateral

R&D collaboration networks among organizations. The objective of the study is to

investigate how geography and heterogeneity in institutional types affect the way

organizations come together around consortiums to perform R&D. It makes use of

data on project proposals submitted to the 7th Framework Program (FP) in the field

of biotechnology to construct a two-mode network. It employs extensions of

exponential random graph models (ERGM) (Frank and Strauss, J Am Stat Assoc

81(395):832–842, 1986; Wasserman and Pattison, Psychometrika 61(3):401–425,

1996, for affiliation networks (Wang et al., Soc Netw 31:12–25, 2009). The results

show that higher education institutions and research institutions tend to show higher

connectivity and hence bridge learning across consortiums. Furthermore, organi-

zations located in the core European countries tend to participate in the same

consortium and these consortiums tend to be small in size. Finally, homophily in

institutional types and network effects do not affect the formation process.

12.1 Introduction

Increasing tendency to collaborate in research and development (R&D) (Hagedoorn

2002; Wuchty et al. 2007) created an interest in network formation processes in the

field of geography of innovation to achieve a better understanding on knowledge

flows in space. R&D collaborations sometimes involve more than two parties,

which come together in the form of a consortium to perform R&D, and give rise

to multilateral R&D collaboration networks. So far these networks have been

Ç.S. Hazir (*)
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analysed assuming that they can be considered as a collection of independent

bilateral interactions (Autant-Bernard et al. 2007; Paier and Scherngell 2008;

Scherngell and Barber 2009; Scherngell and Lata 2013). Nevertheless, multilateral

interactions – i.e. the dependencies among bilateral interactions- might also be

important for the formation process, and hence for understanding how these

networks modify spatial diffusion of knowledge.

First of all, in multilateral R&D collaboration networks (multilateral networks

from now on) when a new consortium is created, a number of organizations get

connected to each other all at once. So far, while some empirical evidence has

shown that pairwise collaboration decisions are positively related to spatial prox-

imity; how it affects composition of consortiums is not obvious. In other words,

whether consortiums are created among proximate organizations or they bring very

distant and very proximate organizations together such that the spatial advantages

and disadvantages are offset is not clear.

Second, within consortiums organizations start exchanging and co-creating

knowledge not only pairwise, but also group-wise. From a spatial point of view,

on the one hand this implies that at least some part of knowledge flows simulta-

neously in a geography defined by the location of consortium members. On the

other hand, it means that through multilateral collaboration some locations gain the

ability to learn collectively. Then, it is a matter of interest to know whether there are

any spatial limits for simultaneous knowledge flows/collective learning to occur.

Third, consortium members, who benefit from these knowledge flows, differ in

terms of the mix of functions (Hekkert et al. 2007) that they perform in their local

innovation system. Hence they differ in their aims and ways of doing research. How

they come into groups and how they differ in their networking activity might inform

policy-makers in developing tools to promote regions to get involved in such

networks.

Therein, in this chapter we depart from the prior work by focusing on the

following two questions: (1) how do different types of organizations (with different

functions) come together around research consortiums in different combinations?

(2) Is the creation process of these consortiums free of spatial constraints or not?

Mainly two strands in the literature suggest some explanations to these questions.

Network formation literature suggests that benefits that are obtained through

partners of partners affect collaboration decisions (Jackson and Wolinsky 1996).

Hence it emphasizes the role of network effects that result from network configu-

ration and position of an agent in the network. On the other hand the proximity

literature (Boschma 2005) suggests that the degree of similarity in exogenous

attributes of agents affect collaboration decisions. While both strands of work

provide a basis to answer to the above-mentioned question, none of them particu-

larly address how group wise collaboration emerges. Thus, there exists a challenge

to bridge pairwise explanations to the consortium level.

We try to handle this challenge by employing a random graph approach and

working on a two-mode representation of the network, and we address the above-

mentioned questions in the field of biotechnology. The chapter will proceed with a
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discussion on processes that underlie formation of multilateral networks. Then, an

empirical application will be presented based on data on project proposals submit-

ted to the 7th Framework Program (FP) in the field of biotechnology.

12.2 Formation of Multilateral R&D Collaboration

Networks

The smallest building block of a multilateral network is a tie that is realized when

an organization decides to participate in a consortium. The determinants of this

decision might be considered through four perspectives. First, as illustrated in

Fig. 12.1a this decision might be taken into account in isolation from other

participation decisions that make up the network, and the determinants that affect

the interest of an organization in engaging in collaborative research might be

studied. Second, a decision maker might be considered in isolation with other

decision makers and a single decision made by the decision maker might be

addressed within its portfolio of participations (Fig. 12.1b). Third, a consortium

might be studied in isolation with other consortiums and attention might be

accorded on determinants of co-participations (Fig. 12.1c). Finally, the intersection

of the perspectives adopted in Fig. 12.1b, c might be considered, and hence the

network effects that stem from interconnectedness of projects is not neglected

(Fig. 12.1d).

12.2.1 The General Interest in Collaborative Research

An organization might engage in multilateral research collaborations for a variety

of reasons, not all of which are necessarily technology related, like improving its

business network or brand reputation. However, due to the fact that the context of

collaboration is to perform R&D and this context is framed by a project plan, one

could assume a stronger role for technology related aspects and describe the main

motivation of organizations as accession to information, knowledge, skills, ideas,

financial capacity to realize a research that they could not achieve on their own, etc.

Fig. 12.1 Four perspectives to study participation decisions
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The level of this interest, however, may vary across different types of organizations

as the mixes of functions (Hekkert et al. 2007) that they perform in their local

innovation system and their primal roles are different. To illustrate, the interest of a

public organization in engaging in research consortiums as a user or a regulator is

different than a higher education institution which seeks scientific or technological

advancements. Furthermore, profit-seeking organizations have appropriability con-

cerns as accession has some associated risks about control on the knowledge

(Cassiman and Veugelers 2002).

Another reason why organizations might differ in their interest in participating in

research consortiums might be the specific role played by some local features. On

the one hand, a high level of industrialization and a well-organized local innovation

system in a place might promote systemic learning and interactive innovation

(Cooke et al. 1997) and hence foster the absorption capacity of organizations

(Cohen and Levinthal 1990). On the other hand, the development of all regional

forms of information services, technological transfer institutions and communica-

tion infrastructure may enhance the circulation of information and hence favour the

ability of agents to be aware of potential consortiums.

12.2.2 Organization’s Portfolio of Participations

Each participation decision individually offers an organization some change in the

scope of knowledge and in absorption capacity. However, a portfolio of participa-

tions suggests more than the bare sum of these individual benefits. The reason is

that organizations do not learn in each consortium in an isolated manner but

sometimes cross-learning occurs across a number of projects (Powell et al. 1996).

Hence, participation decisions made by an organization may depend on each other

regarding the cross-learning opportunities that they suggest.

They depend on each other also because they are competing for the limited

amount of resources that an organization can allocate for (collaborative) research.

Even, they may compete on the same unique resource like staff. Hence, one can

consider two main forces operating on the formation of an organizations portfolio

of participations. While the former promotes multiple participations due to cross-

learning opportunities, the latter dampens it due to cost/resource considerations.

Following the discussion in the previous section, it may be argued that the net

effect of these two forces might differ for different types of organizations. On the

one hand the tendency for multiple participations might be weaker for organizations

with appropriability concerns as cross-learning might also have a negative impact

on the control over knowledge. One the other hand, different types of organizations

might differ in their financial or cross-learning capacity.
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12.2.3 Determinants of Co-participations

In the two preceding sections determinants of participation decisions have been

addressed as if organizations make their participation decisions in isolation from

other organizations and hence independently. However, proximities or competition

motivations may drive organizations to make their participation decisions together

and hence join a consortium in pairs, triples, quadruples, etc. These effects could be

considered in at least two headings.

First, some proximity dimensions (Boschma 2005) may breed co-participations

via facilitating acquaintance or awareness on possible partners and consortiums.

One such dimension is the social proximity, as social ties can play a role to convey

information on possible consortiums, ease getting into contact with them, and hence

result in socially proximate organizations participating in the same consortium. For

the case of bilateral collaboration networks this role has been studied theoretically

and empirically for different types of networks (Van der Leij et al. 2006; Jackson

and Rogers 2007; Fafchamps et al. 2010; Autant-Bernard et al. 2007). In the same

manner, organizational proximity in the form of hierarchies or in weaker forms like

supply-chain relations or business networks may facilitate co-participations.

Finally, geographical proximity may give rise to co-participations as organizations

nearby can be identified more easily.

However, regions differ in terms of the extent that the systemic mechanisms that

foster circulation of information are developed and the extent that their constituents

interact (Cooke et al. 1997). Hence, local features, an integral part of geographical

proximity, might matter in generation of co-participations. In this regard, space

might also be related to network formation as a “setting structure”, which refers to

an exogenous constraint on possible tie dependencies (Pattison and Robins 2002).

Second, all types of proximities may breed co-participations as optimal levels of

proximity between organizations may enhance joint learning (Boschma and

Frenken 2009). For instance, some level of institutional proximity means closeness

in standards, routines, values, goals, languages, etc., which in turn act as enabling

mechanisms that provide stable conditions for interactive learning (Boschma 2005).

Similarly, geographical proximity may promote transmission of knowledge via

facilitating face-to-face contacts (Feldman and Florida 1994; Anselin et al. 2000).

It may also facilitate cross-fertilization of ideas (Feldman and Florida 1994),

pointing out a higher potential of knowledge that could be co-created. In addition

to that, it may enable timely inflows of information (Feldman 1993) or reduce the

cost of collaboration (Hoekman et al. 2009). Beside these, social proximity can

enhance joint learning as social ties may involve trust. Trust is argued to be a factor

that enables the exchange of ideas more openly (Zand 1972), reduces the cost of

negotiations and conflicts (Zaheer et al. 1998), allows transmission of more private

and tacit knowledge as compared to the information exchanged at arm’s-length

(Uzzi 1996). Concerning that a consortium may itself create/reinforce social ties

and/or trust, social proximity may also result in new co-participations with old

partners in new projects. Finally, some level of cognitive proximity might suggest a
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reason for co-participations as sharing common knowledge is a pre-requisite for

understanding each other and benefit from collaboration (Frenken et al. 2007;

Nooteboom et al. 2007). In the case that consortium members preserve their

medium of interaction by engaging collectively in new consortiums, this may

increase their cognitive proximity. While this may improve “relative absorptive

capacity” (Lane and Lubatkin 1998) among members, it may also decrease the level

of heterogeneity in knowledge levels and reduce the propensity to generate inno-

vation (Cowan et al. 2007).

12.2.4 Network Effects

In a multilateral collaboration network, consortium members’ portfolios of partic-

ipations enable organizations to access information created in other consortiums, in

which they are not directly involved. In the literature, there are several models that

relate these network effects to the network formation. One of these models is the

connections model (Jackson and Wolinsky 1996; Bala and Goyal 2000), which

shows that, for different parameter values, these network effects lead to different

stable and/or efficient network configurations.

Similarly, the preferential attachment model by Barabási and Albert (1999)

based on degree affinity as the driver of network formation, meaning that an

agent prefers establishing a link with the agent who has the largest number of direct

connections (i.e. degree). They show that degree affinity is capable of explaining

the formation of the networks defined by the World Wide Web or patent citations.

12.3 Data

The empirical application is based on the European Commission records on project

proposals submitted to the 7th Framework Program (FP7). The raw data is obtained

from the French Ministry of Higher Education and Research and processed by

EuroLIO (European Localized Innovation Observatory). This processing is called

“disambiguation” since the variety in the way an organization is registered in the

database results in ambiguity in organizations that is to be corrected for.

The empirical application that will be presented in the sequel is based on a

sample that is obtained by selecting the information on small or medium-scale

focused research project proposals in the field of “life sciences, biotechnology and

biochemistry for sustainable non-food”. The sample includes 237 project proposals

which have been proposed to the Commission in response to five different calls

issued yearly from 2007 to 2011, and 1313 unique participants.
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12.4 The Model

Exponential random graph models (known also as p* models and in short ERGM)

(Frank and Strauss 1986; Wasserman and Pattison 1996) are based on the idea that

the observed network is just one realization of all possible pattern of connections

among a given set of nodes. The closed form of the model can simply be considered

as a probability density function which expresses the probability of a network

configuration in terms of some sub-structures, called local configurations or

neighbourhoods, it contains. These local configurations may be as simple as

edges or they can be more complex sub-structures resulting from dependencies

among ties (Frank and Strauss 1986; Pattison and Robins 2002). Table 12.1 pro-

vides illustrations of some of these local configurations.

In this study, we employed the extension of ERGM for two-mode networks

(Wang et al. 2009). A two mode network consists of two types of nodes and ties

among them. The first set of nodes (A ¼ {1,2,3, . . .,n}) refers to organizations, and
the second set (P ¼ {1,2,3, . . .,m}) refers to projects. Hence in such a network, the

set (Ω) of all possible ties connecting each organization in A to each project in P is

of size n � m. We denote a possible tie between an organization i ∈ A and a

project j ∈ P, with the random variable Yij, which takes a value of 1 if the tie is

realized (meaning that organization i participated in project j), and 0 otherwise.

Then we express the overall network as a random vector (Y), which is a collection

of tie variables, i.e. Y ¼ {Yij}. We denote a realization of this vector with y ¼
{yij}. Then, the general form of ERGM can be expressed as follows (Robins

et al. 2007)1:

P Y ¼ yð Þ ¼ 1

ù

� �
exp

X

Q

ηQ gQ yð Þ
( )

Where the following definitions hold:

• P(Y ¼ y) is the probability of observing a particular network y.
• ù is a normalizing constant assuring the probabilities given by this distribution

adds up to 1:

ù ¼
X

yEY

exp
X

Q

ηQ gQ yð Þ
 !

1 For statistical and mathematical foundations of ERGM, readers are referred to the joint proba-

bility of a Markov field or the extensions of statistical mechanics of Gibbs to the study of networks

by Park and Newman (2004), and to the Hammersely Clifford Theorem (Besag 1974) proving the

Gibbs-Markov equivalence.
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Table 12.1 Summary of hypothesis and variable definitions

Perspective Variables

Local

configuration

The general interest in

collaborative research

Edges Number of participations

Edges by HES Number of participations by higher

education institutions (HES)

Edges by PRC Number of participations by private

institutions (PRC)

Edges by REC Number of participations by

research institutions (REC)

Edges by EU15 Number of participations by EU15

members

Edges by core Number of participations by the

core

Organization’s portfolio

of participations

Organization

2-stars

Number of 2 paths connecting two

projects

HES 2-stars Number of 2 paths connecting two

projects and centred at HESs

PRC 2-stars Number of 2 paths connecting two

projects and centred at PRCs

REC 2-stars Number of 2 paths connecting two

projects and centred at RECs

Determinants of

co-participations

Project 2-stars Number of 2 paths connecting two

organizations

Co-participa-

tions with

HES

Number of 2 paths connecting two

organizations, one of which is a

HES

Co-participa-

tions with

PRC

Number of 2 paths connecting two

organizations, one of which is a

PRC

Co-participa-

tions with

REC

Number of 2 paths connecting two

organizations, one of which is a

REC

Homophily

HES

Number of 2 paths connecting two

HESs

Homophily

PRC

Number of 2 paths connecting two

PRCs

Homophily

REC

Number of 2 paths connecting two

RECs

Co-participa-

tions with

core

Number of 2 paths connecting two

organizations, one of which is

in core regions

Homophily

core

Number of 2 paths connecting two

organizations located in core

regions

(continued)
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• ηQ is the parameter corresponding to the local configuration (neighborhood) Q.
• gQ(y) is the network statistic corresponding to the local configuration (neigh-

borhood) Q. In a homogeneous model, for a given type of neighborhood Q,
which is a collection of isomorphic neighborhoods q, gQ(y) is given by:

gQ yð Þ ¼
X

qEQ

Y

YijE q

yij

0

@

1

A

There are two main techniques suggested to estimate ERGM: Pseudo-Likeli-

hood Estimation (PLE) (Straus and Ikeda 1990) and Markov Chain Monte Carlo

Maximum Likelihood Estimation (MCMCMLE) (Snijders 2002). Wang

et al. (2009) provide empirical evidence on the performance of the two estimation

techniques for two-mode networks and propose that MCMCMLE should be the

preferred method for two-mode networks.

12.5 The Variables

The four perspectives discussed in Sect. 12.2 are brought together in an ERGM

specification that includes 21 variables (local configurations) (Table 12.1). The

general interest in collaborative research is reflected by the edge configuration,

which has been differentiated with respect to the institutional types of organizations

and their locations. The effect of an organization’s portfolio of participations is

represented by organization 2-stars. The effect of co-participation drivers is mea-

sured by two different local configurations. The first one refers to project 2-stars,

which has been differentiated with respect to institutional types and location. The

second one refers to the continuity of consortiums that stems from the effect of trust

and network learning. Finally, 3-paths are included to account for the network

effects.

Table 12.1 (continued)

Perspective Variables

Local

configuration

Continuity of

consortiums

Actor centred alternating k-two

paths

Network effects

3-paths Number of three paths
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In studying the geographical dimension of the network a core-periphery per-

spective is adopted due to some data limitations and data characteristics. On the one

hand, regional information conforming to NUTS classification is not available for

all countries. Even for countries for which NUTS classification is available,

regional information is not available for finer levels like NUTS3 level for all. On

the other hand, co-participation decisions are not free of the design of FP program,

since the Commission sets the minimum conditions2 on the consortium size and

location of participants. Hence, an analysis of the geographical dimension of co-

participations at a fine regional level is imperfect. For this reason, the following

neighbouring countries, which include regions with very high concentrations of

people, finance, and industry, is called the “core”: Austria, Belgium, France,

Germany, Italia, the Netherlands, Switzerland, and United Kingdom. Being located

in the core has been introduced as an attribute on organizations.

Finally, EU-15 membership has been introduced as an attribute on organizations

as a control variable to account for the fact that over time the FP participation rules

have changed, as well as set of countries that are called member states and associate

states. While countries that have long been a member of the European Union have

not been affected from these changes in participating in FP, those countries that

have more recently joined to EU have been concerned with these changes.

12.6 Estimation Results and Discussion

The model specification that includes all the variables defined above has failed to

converge.3,4 According to Handcock (2003) this might result from two reasons.

First, it may be the case for this specification that MLE does not exist at all. Letting

g(y) be the network statistics corresponding to the neighborhoods used to express

the model, letting C be the convex hull of {g(y): y ∈ Y}, and letting rint(C) and rbd

(C) be the relative interior and relative boundary of C, respectively; Handcock

(2003) states that a necessary and sufficient condition for the MLE not to exist is

that (g(yobs)) ∈ rbd(C). Second, the Monte Carlo process used to approximate the

MLE might have a difficulty to produce realizations that cover the observed values

of the network statistics. In our case, manipulations on the chain length or step size

2 Regulation (EC) No 1906/2006; Article 5/(1) states that “at least three legal entities must

participate, each of which must be established in a Member State or associated country, and no

two of which may be established in the same Member State or associated country”.
3 All estimations are carried out using “BPNet”, which is an extension of the PNet programme

(Wang et al. 2006) and bases on MCMCMLE technique.
4 Convergence is measured by t-ratios calculated to check whether the estimate of the parameter

vector is capable of producing a graph distribution centered at the observed network (Wang

et al. 2009). Snijders (2002) suggests that if the absolute value of t-values for all local configu-

rations (|tQ|) are less than or equal to 0.1 convergence is excellent; if 0.1 < |tQ| � 0.2, it is good,

else if 0.2 < |tQ| � 0.3 convergence is fair.
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did not improve convergence. MCMLE process kept yielding different parameter

vectors which generate networks far from the observed one.

Table 12.2 presents four specifications that converged excellently. Among these,

Model 4, which includes all variables except for continuity of consortiums and

shows the highest goodness of fit, will be interpreted in the sequel. The rest of the

models given in the same table are provided for comparison purposes as they

represent gradually increasing the number of perspectives adopted to study the

participation decisions (recall Fig. 12.1).

Model 4 shows that among five different types of organizations the general

interests of higher education institutions (HES), private enterprises (PRC), and

research institutions (REC) in collaborative research differ from each other and

differ from that of the reference categories; i.e.; public organizations (PUB) and

other types of organizations (OTH). The parameter estimates for these variables are

all negative indicating that network configurations with fewer edges are more

probable. Equivalently, complete or very dense network configurations are not

probable. This is in line with the fact that in the network under study only 0.69 %

of all possible ties are realized.

Model 4 reveals that the behaviour of organizations located in EU-15 countries

is different than that of others. The positive and statistically significant parameter

estimate for edges by EU-15 members indicates that network configurations with

more edges by EU-15 agents are more probable. Accounting for the effect of EU-15

membership, being located in the core does not have an additional effect on the

general interest in collaborative research.

Model 4 also suggests statistical evidence on the effect of dependence among

two participation decisions given by the same organization on network formation.

While these dependencies are statistically significant for all types of organizations,

their magnitudes and directions are different. The parameter estimate for organiza-

tion 2-stars shows the effect of the dependence among two participation decisions

for the reference categories; i.e.; public organizations (PUB) and other types of

organizations (OTH). The negative sign of the estimate for 2-stars and the negative

parameter estimates for edges jointly show that organizations labelled as the

reference category tend to create fewer edges at the aggregate level and also at

the individual level they tend not to have star behaviour. On the other hand, as

compared to the reference category a more negative estimate for edges by HES and

a more positive estimate for HES 2-stars indicate that networks, where higher

education institutions have single participations, are less likely; in contrast net-

works, where higher education institutions behave like stars, are more likely.

Similar arguments hold for research institutions and private enterprises as well.

In addition to these Model 4 suggests that location of participants plays a role in

composition of the consortiums. The negative and statistically significant parameter

estimate for “co-participations with core” suggests that the more crowded that a

consortium with a participant located in the core gets, the less likely the resulting

network configuration. However, the positive and statistically significant parameter

estimate for “homophily core” reveals that more likely networks are those including

a higher number of co-participations by organizations that are located in the core.
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Hence, these two parameters point out to a process where organizations in the core

tend to collaborate with each other and in small consortiums.

In Model 4, all variables investigating the institutional aspect of consortium

composition are found to be statistically insignificant. This result complies with the

fact that in the observed network almost all consortiums are heterogeneous in terms

of institutional types.

Also, the parameter estimate for 3-cycles, which are included in the model to test

for network effects, is found to be statistically insignificant. This may be due to the

fact that an organization’s access to information on another’s portfolio of partici-

pations is rather limited in real life. A study by Lhuillery and Pfister (2011), which

investigates the awareness of firms of potential ties among their main direct partners

by using French data, supports this by revealing that firms are aware of less than

half of the potential indirect ties among their direct partners.

Finally, the goodness of fit of the models is assessed through a simulation study.

According to results Model 4 performs better than the other models and reproduces

many network properties successfully or almost successfully according to the

heuristic criteria suggested by Wang et al. (2009). However, it suffers in replicating

the clustering in the network. Despite the fact that the level of clustering is very low,

it is a matter of fact that the model is not well-performing in this aspect.

12.7 Conclusions

In this study, multilateral R&D collaboration is considered as a particular context to

study network formation since the nature of tie formation and knowledge flows in

such networks differ from those in bilateral collaboration networks. The two main

goals of the study was to explain how organizations come into groups to conduct

research given that they are institutionally different and whether these grouping are

free of spatial constraints or not. To answer these questions, mainly, insight

provided by network formation theory and the proximity literature is moulded

with social network analysis approach. Some empirical results are obtained based

on the data on proposals submitted to FP7 on a specific sub-theme by using a two-

mode representation of the multilateral network and exponential random graph

models.

One set of conclusions that can be derived from this study helps understanding

how different types of organizations behave in terms of connectivity/multi-connec-

tivity and how they come into groups. The results suggest that higher education

institutions and research institutions tend to participate in a higher number of

consortiums. On the one hand this means that they constitute the main bridges for

learning across consortiums. On the other hand, it may also point out to a difference

in capacity or interest to create and maintain a portfolio of participations. Although

the statistical evidence brought by this study is not sufficient to draw general policy

recommendations, both of these interpretations might be informative for regional

policy makers in designing customized policy tools to increase their regions’

involvement in collaboration networks.
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Apart from that, the findings show that homophily in institutional types does not

play a role in the construction of consortiums. This points to a favourable situation

in FP7 biotechnology network, as it means that knowledge can possibly diffuse

among different parts of the economy. Hence, the underlying network formation

processes in FP7 in biotechnology result in a network configuration that permits

collective learning by different economic actors.

Another set of conclusions comprise the spatial dimension of these networks.

The findings suggest that organizations located in the core European countries tend

to participate in the same consortium and these consortiums tend to be small in size.

This means that collective learning tend to localize in a continuous corridor in the

Western Europe and joint learning capabilities of organizations located in this

corridor is being reinforced. Furthermore, the results reveal that the interest in

multilateral collaboration is higher for organizations located in EU-15 as compared

the others. From a spatial point of view, this means a difference between Western

and Eastern Europe in benefiting from flows in multilateral R&D collaboration.

From an analytical and methodological point of view, the results obtained

through a core-periphery perspective – i.e. participation decisions depend on each

other in the core, and the effect of this dependence is statistically significant-

highlights an important point. On the one hand this illustrates the additional

explanatory capacity suggested by models relaxing the tie independence assump-

tion. On the other hand, it shows that geography might not only play a role by

affecting the utility out of collaboration but also as a delimiter/facilitator of tie

dependence.

Nevertheless, the results obtained in this study lack further research effort in several

aspects. First, due to data limitations the geographical dimension has been addressed

at a broad scale. Second, in this study the network is studiedwith a static approach as if

all consortiums are created simultaneously. Obviously, an organization makes some

of its decisions simultaneously, and some at different time instances. Hanneke

et al. (2010) and Krivitsky and Handcock (2010) proposed temporal extensions to

ERGM to study the evolution as a discrete time Markov process. In this respect, we

think that integrating a temporal aspect to study the evolution of a multilateral

cooperation network is promising. Third, the study draws empirical evidence from a

single technological field.Whether the network formation dynamics in biotechnology

apply to other fields remains as an issue to be addressed.
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Chapter 13

The Structure and Geography

of Collaboration Networks in the European

GNSS Industry

Jérôme Vicente, Pierre-Alexandre Balland, and Raphaël Suire

Abstract The concentration and dispersion of innovative activities in space have

been largely evidenced by the nature of knowledge and the geographical extent of

knowledge spillovers. One of the empirical challenges is to go beyond this by

understanding how the geography of innovation is shaped by particular structural

properties of R&D collaboration networks. This paper contributes to this challenge

focusing on the case of global navigation satellite systems at the European level.

We exploit a database of R&D collaborative projects based on the fifth and sixth EU

Framework Programs, and apply social network analysis. We study the properties

both of the network of organisations and the network of collaborative projects. We

show that the nature of the knowledge involved in relationships influences the

geographical and structural organisations of the technological field. The observed

coexistence of a relational core/periphery structure with a geographical cluster/

pipeline one is discussed in the light of the industrial and geographical dynamics of

technological standards.

13.1 Introduction

Technological innovations emerge according to micro–macro dynamics in which

networks and geography shape the process that turns new ideas into dominant

designs. This paper aims to evidence this process, focusing on the structural

dimensions of R&D collaboration networks. The literature on geography of
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innovation has provided important empirical evidence showing that firms learn

more easily from each other when they are located within the same place (Feldman

1999). The economics of innovation literature has also early recognized the central

role of networks in the development of new products, new processes and new

knowledge (Freeman 1991; Hagedoorn 2002). And recent applications of concepts

and tools originally developed in network science have pushed further our under-

standing of the role played by network structure on innovation processes (Ter Wal

and Boschma 2009).

To understand better the role of geography and networks in innovation activities,

scholars have often investigated the type of knowledge which is actually exchanged

between actors. The conceptualization of the nature of knowledge has been a

central debate in the field (Cowan et al. 2000) and especially the reference to

tacit knowledge has increasingly been used to explain the spatial patterns of

innovative activities. Despite this strong interest, empirical studies that investigate

how geographical and structural patterns of technological fields are affected by the

nature of knowledge remain scarce. Indeed, knowledge spills over both network

structures and geography (Breschi and Lissoni 2001), and little is said about the

links between the nature of knowledge and the structural organisations of techno-

logical fields. Noticeable exceptions come from Broekel and Graf (2012), who

investigate how the structure of R&D networks varies depending on the fundamen-

tal or applied nature of knowledge ties.

This paper aims at contributing to this challenge by investigating empirically

how geographical and structural patterns of technological fields change according

to the different stages of technological development. To deal with this challenge,

we focus on the particular case of Global Navigation Satellite Systems (GNSS) in

Europe. GNSS is a set of satellite systems that provide positioning and navigation

solutions. The diffusion of these technologies, as for many information technolo-

gies and technological standards, depends on the level of interoperability at the

infrastructure level, as well on the level of technological integration between

infrastructures, materials (receivers, chipsets) and applications.

The paper is organized as follows: Sect. 13.2 recalls the challenging introduction

of structural properties of collaboration networks into the traditional parameters of

the geography of innovation. Section 13.3 discusses a set of testable propositions

that link cognitive and geographical dimensions of networks to their purely struc-

tural dimensions, stressing on the particular case of technological fields in which

standardization influences the structuring of networks. Section 13.4 presents the

data set of R&D collaborations in the European technological field of GNSS.

Section 13.5 proposes an original network analysis developed for both identifying

the nature of knowledge involved in relationships and the structural properties of

the R&D collaboration network. Section 13.6 tests separately each proposition and

discusses the formal results. Section 13.7 combines these results, emphasizing how

and why the knowledge process at work in the European GNSS technological field

matches geographical cluster/pipeline and network core/periphery structures in a

way that permits an emerging idea to be turned into a mass market standard.
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13.2 Theoretical Context

The geography of innovation exhibits structures that result from localization and

knowledge externalities. One of the main results is that innovation activities tend to

be concentrated since tacit knowledge limits the diffusion of knowledge and

geographical dispersion occurs as far as knowledge grows in codification

(Audretsch and Feldman 1996). But for Breschi and Lissoni (2001), what is hidden

behind knowledge externalities could be more the result of the intentional effort of

organisations to exchange and combine knowledge than a simple corridor effect.

The geographical extent of knowledge spillovers does not depend only on distance

but also on the ability of knowledge to flow across relational structures.

The literature in knowledge economics has addressed the micro-motives for

shaping knowledge relations, showing that these relations partly involve opportu-

nities to access missing knowledge and partly involve risk of weakening knowledge

appropriability (Antonelli 2006). The key parameters for the valuation of these risks

and opportunities are the degree with which the knowledge bases of partners

complement each other and the degree of openness of their model of knowledge

valuation. Organisations decide to form a knowledge partnership only when each

one assumes that the benefits of knowledge accessibility will exceed the risks of

under appropriation. Structural properties will be not purely physical, but the result

of the strategic behavior of organisations to deal with their own knowledge trade-

off. Geography matters for the micro-motives of organisations for shaping knowl-

edge relations. Indeed, geographical proximity between organisations involved in a

partnership has ambivalent effects on their respective innovation capabilities

(Boschma 2005). What these effects are will depend on at least two related criteria:

the phases of the knowledge value chain, and the gap between their absorptive

capabilities (Nooteboom 2000). Geographical proximity will be more appropriate

between partners when they have to favor mutual understanding, and when their

core capabilities are sufficiently distant to avoid the risks of unintended knowledge

spillovers. Conversely, when partners share close capabilities and compete in few

differentiated markets but find opportunities for cooperation (in standards setting

for instance), the risk of unintended spillovers is high and geographical distance or

temporary proximity are more compatible than proximity.

For a particular knowledge process in a particular technological field, a collab-

oration network will be defined as the set of organisations that are involved in the

field and the set of knowledge ties between them. From this relational matrix and

considering the location of organisations, structural properties of the network will

be good markers of the channels through which knowledge flows and geography

structures itself. The level of connectivity is a good marker to understand the

co-existence of arms-length and network relations in a technological field (Uzzi

1997), in particular when compatibility and standardization matter (Cowan

et al. 2004). Moreover, a knowledge network can be characterized by a heteroge-

neous level of relations for each organization, giving rise to particular structures,

such as the regular core/periphery structure observed in many situations (Borgatti
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and Everett 1999). A network exhibits a core/periphery structure when a highly

cohesive structure of knowledge interactions between organisations co-exists with

organisations that are poorly connected between themselves and with the core. Such

a structure shows that knowledge relations are not randomly distributed within a

network and can be interpreted as a particular stage of its dynamics. The geography

of a knowledge network will reflect these properties. Since Porter’s research (Porter

1998), clusters have been seen as efficient structures that favor innovation and

growth. Nevertheless, thinking about innovation by focusing only on geographical

clusters is a narrow view of innovations occurring in most technological fields. If

clusters exist, they are generally embedded in larger geographical structures, and

connected through global pipelines (Bathelt et al. 2004; Trippl et al. 2009).

13.3 The Structural and Geographical Properties

of the European GNSS Collaboration Network: Two

Propositions

The structural properties of knowledge networks has been increasingly investigated

in the last couple of years, theoretically (Ter Wal and Boschma 2009; Boschma and

Frenken 2010) as well as empirically (Owen-Smith and Powell 2004; Autant-

Bernard et al. 2007; Scherngell and Barber 2011; Vicente et al. 2011; Balland

2012; Broekel and Graf 2012). These studies concern different industrial sectors

and technological fields, different geographical areas, and different sources of

relational data. Here we discusse testable propositions that link cognitive and

geographical dimensions of knowledge networks to their purely structural dimen-

sions, focusing on the particular case of a technological field in which standardi-

zation and the emergence of a dominant design influences the structuring of R&D

collaboration networks. GNSS is a standard term for systems that provide position-

ing and navigation solutions. These technologies were originally developed in the

aerospace and defense industries. But nowadays, they find complementarities and

integration opportunities in many other socio-economic contexts concerns by

mobility. The diffusion of GNSS related innovations depends on a high level of

interoperability and compatibility, as well as a growing number of applications for

consumers. That is why innovations in the field are driven by public incentives as a

strategic challenge for policy makers to set a European standard of navigation and

positioning through the Egnos and Galileo programs.
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13.3.1 Structural Properties of Networks and Technological
Standard Diffusion

The structural organization of the GNSS technological field will depend on the

interplay between the phases of the knowledge value chain (Cooke 2006), the

degree of maturity of the field regarding the market conditions (Audretsch and

Feldman 1996), as well as its degree of relatedness regarding the interoperability

and compatibility constraints of technological standards diffusion (Vicente

et al. 2011; Broekel and Graf 2012). Indeed, GNSS are considered general purpose

technologies for which the willingness of consumers to pay and adopt depends on

the weight of network externalities on the demand side, and thus requires a high

level of interoperability between competing suppliers (Katz and Shapiro 1994).

Firstly, the diffusion of GNSS will depend on the ability of the suppliers of the field

to interact in order to pool together their knowledge and existing technologies

around a common standard. Secondly, general purpose technologies such as

GNSS cross different sectors and markets so that their diffusion depends on the

variety of applications and new markets they water. Transport, telecommunica-

tions, software, safety, tourism, environmental observations, among others, are

sectors concerned by GNSS-based innovations, and require a high level of knowl-

edge integration between separated and sometimes cognitively distant knowledge

in order to propose viable integrated systems to consumers. One can expect that the

maturity of the industry goes with a high level of density and connectedness in the

collaboration network, with a high level of closure and triangulation that favors the

mutual understanding between partners and prevents opportunistic behaviors

(Coleman 1988; Cowan et al. 2004).

Nevertheless, literature shows that highly cohesive structures of knowledge

interactions produce conformism and display risks of lock-in (Ahuja et al. 2009).

Redundant ties limit access to new information and fresh ideas (Burt 1992), and can

sclerose the technological field as a whole. Technological fields characterized by a

high level of closure can enter into a phase of inhibition, which is typical of the

decline phase of the product life cycle. Technological fields will exhibit a long term

viability and development, when, in parallel to the structuring of the core, a less

cohesive but not disconnected pool of explorative knowledge remains at the

periphery of the collaboration network. In the exploration phase, technologies are

beta tests and compatibility constraints are not as critical as in the integration and

exploitation phases. But this pool of fresh and news ideas should be connected to

the core of knowledge interactions, in order to be turned into tradable innovations in

the future. Under such structural conditions, the technological field develops an

endogenous capability to grow through its periphery, in particular with the strategic

and creative role played by the organisations that connect the core to the periphery

(Cattani and Ferriani 2008). Between disconnected structures of knowledge inter-

actions that typify the very early stage of a technological field, and the highly

ossified and dense structures of interactions that could typify a lock-in process, an
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expected core/periphery hierarchy appears as a marker of the increasing maturity of

the field.

13.3.2 Geographical Properties of Networks
and Technological Standard Diffusion

Previous research has already demonstrated that industry life cycles are sensitive to

geographical changes due to the increasing codification of knowledge along the

cycle of a product (Audretsch and Feldman 1996). The clustering of innovative

activities corresponds to the early stage of a product, while dispersion occurs when

an industry reaches a high level of maturity. If these results have been abundantly

evidenced, they failed to investigate the interaction structures that shape these

geographical changes. From the very early phase of emerging ideas to the phase

from which these ideas are turned into mass market products, structural as well as

geographical properties of knowledge networks evolve.

For instance, Owen-Smith and Powell (2004) highlight structural and geograph-

ical patterns along the growing maturity of the biotech sector in Boston. They show

that, at the early stage of the cluster, the cohesiveness of the local relational

structure rested mainly on the active participation of public research organisations

that connect disconnected private organisations in a very open structure of funda-

mental knowledge dissemination. At the same time, in a nested analysis of geo-

graphical scales, they compare the structural and cognitive properties of the local

network to the ones of the network extended to other organisations in any locations

that have a tie with local ones. They show that clustered relations depend on the

dominance of an academic and open institutional regime, while pipelines relation-

ships in which private and big firms are involved remain focused on a market

regime in which knowledge appropriateness prevails. Ter Wal (2011) proposes a

network-based empirical study in the same knowledge field in the case of the

German co-inventors network and observes a similar pattern of the evolution.

From the exploration phase in the 1980s to the exploitation phase in the 1990s,

he observes a shift in the network strategies of biotech organisations. While the

network grew initially along geographical proximity, the increase of knowledge

codification along the maturity process has led companies to use global networks as

a resource of triadic closure, which favor trust and knowledge appropriateness.

The geography of R&D collaboration networks is thus dependent on the attri-

butes of the organisations and the knowledge value chain of innovations. If clusters

remain crucial in the explorative knowledge phase through their ability to connect

separated knowledge, they cannot be self-sufficient since diffusion and commer-

cialization require an enlargement of networks in space. Such a geographical

structure corresponds to a particular stage of the growing maturity of the field.

Research-based organisations are still active in connecting knowledge assets in

order to develop new ideas in clusters. At the same time, the incumbents and
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engineering companies develop pipelines, in parallel to their cluster embeddedness,

in order to coordinate the definition of future technological standards and integrate

knowledge stemming from other sectors in order to define these standards. Then he

clusters/pipelines structure of knowledge interactions in a particular technological

field is typical of the overlap between the phases of its knowledge value chain.

13.4 Data

As a relational data source, we use joint R&D projects funded by the Framework

Programmes (FP) for research and technological development of the European

Union. As such, we follow recent empirical studies emphasizing the advantage of

this kind of relational data in economic geography (Autant-Bernard et al. 2007;

Breschi et al. 2009; Scherngell and Barber 2011; Balland 2012). For the purpose of

this paper, we exploited the GNSS Supervisory Authority1 (GSA) database on joint

GNSS R&D projects funded by the 5th and 6th FP from 2002 to 2007.

This primary database is mainly used to deduce two adjency matrixes: the

network of projects and the network of organisations that will be analysed in the

empirical section. To construct the network of projects, it is assumed that two

projects are linked if at least one organization participates in these two projects. To

construct the network of organisations, we have converted the primary 2-mode

matrix into a 1-mode square matrix of collaborations between all the organisations.

We assume that each project is fully connected (forming a clique), so that two

organisations are linked if they participate to the same project. Descriptive statistics

on the network of projects and the network of organisations are presented in

Table 13.1. They show that both the network of projects (0,181) and the network

of organisations display a relatively high density (0,055) and a high connectivity.

Considering the network of projects in particular, we identify a principal compo-

nent of 66 projects, meaning that only 6 projects are isolated during the period of

study.

The degree centrality distribution exhibits an asymmetrical shape, indicating

that only a few nodes have a high probability of having large number of relations

(Fig. 13.1). This statistical signature suggests some interesting traits about the

industrial structure of the GNSS sector, related to the setting and control of

technological standards. Vertical firms and transnational corporations as well as

spatial agencies are often representative organisations of this type of market.

1 GSA is the European GNSS Agency, in charge of public interests related to GNSS programmes

in Europe.
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13.5 Methodology

In this section, we describe the method we used to capture the nature of knowledge,

in order to proceed to the social network analysis of both the network of organisa-

tions and the network of projects. The exploration-integration-exploitation taxon-

omy is discussed as well as the robustness of the final classification of projects we

obtain. In addition, we explain the methodology for the empirical identification of

clusters and pipelines in Europe.

13.5.1 Exploration – Integration – Exploitation: A
Taxonomy

Joint R&D collaborative projects refer to a large variety of knowledge processes,

ranging from exploration (fundamental research) to exploitation (applied focus) to

follow the distinction proposed by March (1991). In the context of the GNSS

industry, we also consider the integration category, for projects combining different

existing technologies because this kind of project is concerned with specific

standard and compatibility issues.

To proceed to the classification of the different projects into these three catego-

ries, we developed an approach making use of three criteria. First we analyzed the

Table 13.1 Structural characteristics

Statistics Network of projects Network of organisations

Nb of nodes 72 360

Nb of links (valued) 1,512 7,842

Nb of links (dichotomized) 914 7,144

Density 0.181 0.055

Main component 66 339

Fig. 13.1 Degree centrality

distribution among the

360 organisations
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main goal of the project, as expressed in the title of the project, or in the abstract. It

generally already gives a clear overview of whether projects are oriented from

general concern for GNSS to very specific applications. Second, we used a criteria

based on the redundancy of specific related key words (Table 13.2) in the abstract

and in other available project documents (work-package reports for instance). By

consequence, we classified in “exploration” a set of projects that do not develop

direct applications, but aim at improving general knowledge for navigation and

positioning. This consists of knowledge production far from clear market opportu-

nities, even if prototypes or beta tests can sometimes result from fundamental

research and models. For instance, projects that focus on research for accuracy

and reliability of Galileo/Egnos signals, synchronization or calibration of atomic

clocks can be considered as belonging to this early phase. On the other hand, we

classified as “exploitation” the projects proposing to develop well defined GNSS

applications, for instance the development of applications specifically required for

transport regulation, air fleet management or emergency services. Finally, we found

relevant to distinguish a third category: “integration”, for projects proposing tech-

nical integration of two technologies. For instance, in the database, most of the

integrative projects are dedicated to the convergence and interoperability between

GNSS, telecommunication and computer industries. The integration of two tech-

nologies requires additional R&D in order to ensure the compatibility between

them.

13.5.2 Robustness of the Classification

We analyzed which type of organization is involved in which kind of project.

Broekel and Graf (2012) directly use this kind of approach to distinguish between

projects dedicated to basic and applied research, arguing that public research

organisations and universities are more likely to be involved in the former, while

firms are more likely to be involved in the latter. Following this reasonable

assumption, we distinguish among research, engineering and market-related types

of organization. We considered that public research organisations and universities

belong to the “research” category. Firms specialized in satellite or telecommunica-

tions infrastructure, hardware or software, belong to the “engineering” category.

“Market-related” category is an important residual one for the GNSS industry,

involving final users, designers, associations and business consultants (Vicente

et al. 2011). A large proportion of organisations developing engineering knowledge

are found (192), with a balanced distribution of organisations developing research

(84) and market-related (84) knowledge. This straightforward typology of knowl-

edge bases of organisations allows us to control for our projects’ classification by

combining the distribution of the knowledge types of the organisations with the

knowledge nature of the projects. Each project displays a number of knowledge

bases equal to its number of partners. We studied the distribution of the knowledge

bases in the different projects, according to their knowledge phases (Table 13.3).
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This test confirms the robustness of our classification, as research organisations

are more involved in exploration, engineering firms in integration, and market-

related actors in exploitation.

13.5.3 Identification of Clusters and Pipelines

The GSA and FP databases provide systematic information on the country of the

organisations and the name of a contact person, but information concerning postal

addresses of organisations is not always indicated. However, the small size of the

network allowed us to find missing postal addresses of organisations on their web

sites, work packages of the projects or specialized GNSS websites. When a doubt

still remained, especially for multi-establishment firms, more thorough research

was undertaken in order to find the establishment of the engineers involved in the

work packages we were considering. At the end, less than 8 % of the postal

addresses are missing. On this base, we proposed a method to identify clusters

and pipelines from the global network of organisations. Starting from the square

matrix of organisations (360 � 360), we aggregated all the organisations belonging

Table 13.2 Knowledge phase of the projects

Exploration Integration Exploitation

Main goal New knowledge for future

applications

Combine pre-existing

technologies

Develop GNSS-based applica-

tions and services

Key words Concepts/theory Technological standard Market

Research Interoperability Use

Investigation Combination Applications

Simulations Satellite + ICT Design

Mathematical model PDA Development

Study Wireless Services

Table 13.3 Types of organisations and cognitive nature of collaborations

Exploration Integration Exploitation Total

Research

62 37 25 124

(%) 52,5 % 15.9 % 9.2 % 20 %

Engineering

(Nb of organisations) 46 163 169 378

(%) 39 % 70.3 % 62.4 % 60.8 %

Market-related

(Nb of organisations) 10 32 77 119

(%) 8.5 % 13.8 % 28.4 % 19.2 %

Total

(Nb of organisations) 118 232 271 621

(%) 100 % 100 % 100 % 100 %
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to the same region, taking NUTS2 regions as the spatial unit of analysis (Autant-

Bernard et al. 2007; Scherngell and Barber 2011). Then we obtained a new 1-mode

matrix of relations between regions, with the diagonal indicating the number of

relations within the region.

Figure 13.2 represents the distribution of the number of organisations of the

88 NUTS2 European regions in which at least one organization is involved in the

GNSS collaboration network. If we plot the regions against their rank with a log-log

scale, it appears that this distribution follows a power law which is quite similar to

Zipf law with a slope of �0.9576 obtained with a least square estimation. It is

interesting to note the non-monotonic shape of the plot for the first seven values.

Conformably to a Zipf like relation, it appears that only very few regions (7/88)

concentrate a high number of organisations (more than 10) and a relational density

higher than the average density of the network as a whole (see below). We

considered that the main GNSS clusters are located in these seven regions. Then

we drew a relational matrix for each of these clusters (i.e. we removed all organi-

sations outside of the clusters) in order to study their cognitive structure. Pipelines

were studied according to the block matrix of relations between regions.

13.6 Main Findings

This section presents the main empirical results concerning the influence of the

nature of knowledge on structural and geographical properties of the GNSS tech-

nological field. Both the network of organisations and the network of projects are

analyzed in a complementary way to provide empirical evidence for the proposition

previously discussed.

Fig. 13.2 Distribution of organisations among 88 NUTS II European regions
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13.6.1 Structural Organization of the Collaboration
Network: A Core/Periphery Structure

We study the connectivity of the different R&D projects according to their knowl-

edge features. We use the core/periphery model developed for social network

analysis by Borgatti and Everett (1999). The core/periphery partition is obtained

by using a genetic algorithm (Goldberg 1989). It maximizes the correlation between

the observed core/periphery partition matrix and an ideal core/periphery pattern

matrix where only core nodes are fully connected, while all peripheral nodes are

isolated. Applying this model to the network of projects, we empirically identify a

core formed by a group of densely connected projects, while another group of more

loosely connected projects constitutes the periphery (Fig. 13.3). Table 13.4 presents

the results of the model. Projects in the exploration phase are mostly peripheral,

since only 4.4 % of the projects that are in the exploration phase are in the core. In

contrast, 32 % of integrative projects and 41.7 % of exploitative projects belong to

the core. The closer projects are to the market, the more they are interconnected. On

the contrary, the upstream phase of knowledge value chain remains “located” at the

periphery.

This result can be strengthened by an econometrical test in order to control for

the size of the projects. Recall that we have shown above that organisations are not

randomly distributed along the knowledge phases (exploration, integration, exploi-

tation). Thus, we perform an econometrical test in order to estimate whether the

knowledge profile of the partners (research, engineering, or market-related) influ-

ences the probability of the project belonging to the core of the network, with the

size of the project as a control variable. To that end, for each of the 72 projects we

distinguish the respective level of organisations belonging to research, engineering,

and market-related categories. Then, we use a continuous variable range from 1 to

10 regarding the level of presence of each knowledge base.2 For instance, a project

of size 19 with 2 “research” organisations, 16 “engineering” organisations and

1 “market-related” organization is coded (2, 9, 1). This means that respectively

10.53 %, 84.21 %, 5.26 % of organisations are research, engineering, and market-

related ones. We define Yi ∈ {1,72}, as a binary variable taking the value 1 if the

project i belongs to the core and the value 0 otherwise. The probability of belonging

to the core is assumed to be related to the size of the project and the knowledge

profile of the partners. The relationship is specified as:

Pr Yi ¼ 1 Xj½ � ¼Φ β0þβ1sizeþβ2size
2þβ3researchþβ4engineeringþβ5market

� �
,

With Φ(.) representing the cumulative normal distribution function and X is the

vector of regressors. We also estimate marginal effect which is the slope of the

probability curve to each regressor X to Pr[Yi ¼ 1|X], holding other variables

2 For each project we code 1 if the project exhibits between 0 % and 10 % of organisations with a

knowledge profile, 2 if the project exhibits between 10 % and 20 % . . . to 10 if the project exhibits
between 90 % and 100 %.
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Fig. 13.3 Core & Periphery structure and nature of knowledge (Black squares represent projects
dedicated to exploration, grey squares to integration, and white squares to exploitation. The line
strength represents the number of organisations that tie projects, from 1 to 5 ties)

Table 13.4 Core &

Periphery
Core Periphery Total

Exploration

Nb of projects 1 22 23

% 4.4 % 95.6 % 100 %

Integration

Nb of projects 8 17 25

% 32 % 68 % 100 %

Exploitation

Nb of projects 10 14 24

% 41.7 % 58.3 % 100 %

Total

Nb of projects 19 53 72

% 26.4 % 74.6 % 100 %
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constant.3 The following table displays the result of a probit estimation,4 as well as

the marginal effect of each variable (Table 13.5).

As we suspected, the probability of a project belonging to the core of the network

is significantly influenced by engineering and market-related knowledge bases.

Conversely, increasing the level of the research component has no effect on the

probability of belonging to the core of the network. The marginal effect of the

research component has no impact on the probability to belong to the core of the

network. It also means that if a collaborative project has to belong to the core for

market purpose or standardization consideration, increasing the level of the

research base within the project has no effect on the probability of belonging to

the core. The engineering component is the more influential determinant: a mar-

ginal positive variation of this knowledge base increases the probability of belong-

ing to the core by 0.7 %. Finally, an interesting result appears regarding the size of

the project. Increasing the size of the project has a positive effect on the probability

of belonging to the core of the network but at a decreasing rate, which means the

existence of a threshold above which the marginal actors negatively influence the

probability of belonging to the core. As previously mentioned, one plausible

explanation relies on the limited capabilities of various partners to efficiently

manage coordination costs. This hypothesis is sustained in network literature on

strategic networks stability (Jackson and Wolinsky 1996).

Table 13.5 Probit estimation and marginal effect

Explained variable ¼ belonging to the core Probit estimation Marginal effect

Size 0.925*** .0044***

(0.204)

Size^2 �0.019*** �.0000908***

(0.004)

Research 0.713 .003393

(0.725)

Engineering 1.604* .0076339*

(0.758)

Market-related 1.206* .0057391*

(0.620)

Constant �23.962**

(9.497)

Number of observations 72

Log pseudolikelihood �9.889

Pseudo R2 0.7620

Note: ***, **, * mean significant at the level of 1 %, 5 %, and 10 % respectively. Robust standard

errors in parenthesis.

3 Detailed about the econometric specification can be found in Cameron and Trivedi (2005).
4We control for Heteroscedasticity with White correction.
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13.6.2 Geographical Organization: A Clusters/Pipelines
Structure

The second set of results concern the way the features of knowledge influence the

geographical structuring of the technological field. As previously said, clusters are

identified on the basis of the number of organisations in the region that are involved

in GNSS projects, but also according to the number of relations within the cluster.

This methodology allows us to identify the main GNSS clusters and the pipelines

between them (Fig. 13.4).

Table 13.6 presents descriptive statistics concerning the seven main GNSS

clusters. Considering the number of relations, the biggest cluster is located in the

Community of Madrid (132 ties within the cluster), the second one in the Lazio

Region (74) and the third one in the Midi-Pyrenees Region (52). We can see that

these three clusters include the three main organisations (according to their degree

centrality): Thales Alenia Space (Toulouse), Telespazio (Roma) and GMV

(Madrid).

In order to provide information about the cognitive structure of the GNSS

clusters, each cluster’s relational matrix has been divided into three matrixes

(nodes are still organisations), according to the nature of relations: exploration,

integration and exploitation. Table 13.7 shows how the nature of knowledge

influences the geographical organization of the GNSS technological field.

Indeed, 48 % of the relations within the clusters belong to the exploration phase,

30 % to the integration phase and only 22 % to the exploitation phase. This result is

Fig. 13.4 GNSS clusters

and pipelines in Europe
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in line with the literature, according to which geographical proximity is more

important in the exploration phase (Audretsch and Feldman 1996). Similarly, the

pipeline relational matrix has been divided into three matrixes (the nodes are still

the seven clusters), according to the nature of relations: exploration, integration and

exploitation. Table 13.8 reveals a radically different distribution than the one found

for local knowledge relations. Indeed, now 35 % of the relations across the clusters

belong to the exploration phase, but 44.5 % to the integration phase and only 20.5 %

to the exploitation phase. This result shows that organisations are more likely to

collaborate with others located in another dominant cluster when collaborating on a

project in the integration phase. Thus, we have shown that the phases of knowledge,

i.e. exploration, integration or exploitation, are not randomly developed in clusters

and pipelines, but that exploration tends to require more geographical proximity.

13.7 Discussion: How Do Clusters/Pipelines and Core/

Periphery Structures Work Together in R&D

Collaboration Networks?

Firstly, the study of connectivity between projects suggests that organisations that

are not directly tied in a project can be tied through intermediaries that connect

separated projects, so that knowledge can potentially flow into the network. If arms’

length relations exist, knowledge diffusion and exchange seem to prevail in a

cohesive structure of relations. This means that most of the organisations are

aware that GNSS are general-purpose technologies that require a high level of

interoperability and compatibility between applications. Such a result is typical of

Table 13.7 Nature of knowledge flows in clusters and pipelines

Exploration Integration Exploitation Total

Within the clusters

Nb of links 178 116 84 378

% 47 % 31 % 22 % 100 %

Within the pipelines

Nb of links 462 588 274 1,324

% 35 % 44.5 % 20.5 % 100 %

Clusters/others

Nb of links 1,482 1,610 890 3,982

% 37 % 40.5 % 22.5 % 100 %

Others/others

Nb of links 210 376 478 1,064

% 20 % 35 % 45 % 100 %
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the “industry of networks”, for which development and diffusion require standard-

ization. This relatedness is also the result of the European Commission strategy that

makes sure that research in the field rests on the setting of standards, in order that

innovations turn into mass-market technologies. The overall connectivity of the

GNSS network exhibits an interesting structural property of core/periphery, mean-

ing that beyond the average level of connectivity between collaborative projects,

some of them are highly interconnected while some others remain poorly

connected. On one hand, the development of the market will be all the more

extensive if organisations exchange knowledge in order to set and stabilize the

standard. Nevertheless, a full cohesive structure can engender some risks of lock-in.

That is why, on the other hand, exploration activities enter the network gradually

through the periphery, in order to maintain research and upstream technological

solutions that can diffuse to the core when market opportunities occur.

Secondly, it is noteworthy that the main geographical clusters of the GNSS

network are typified by a high level of explorative relations and a decreasing share

of relations from exploration to exploitation (Table 13.7). This is not really a

surprising result since the literature shows that exploration phases compel a high

level of fundamental and tacit knowledge that requires proximity between organi-

sations and social network effects. If we turn to pipelines, Table 13.7 shows that

pipelines gather a large part of collaborations in the integration phase. An efficient

integration and combination process requires cooperation between complementary

as well as competing companies located in different clusters in order to set up a

technological standard as widely as possible. The “space alliance” being composed

by a couple of clusters in Europe (Fig. 13.4), the existence of these pipelines in the

engineering process confirms the usefulness of the Galileo project. This project

intends to organize the viability of the technological field by creating incentives for

cooperation, in order to guarantee the diffusion of GNSS-based applications.

Finally, knowledge relations in the exploitation phase are poorly represented in

the main clusters as well as in pipelines. A large share of exploitation relations

involves organisations that are dispersed in Europe. This result is not a surprise

since the main purpose of collaborations in this phase concerns market tradability

and diffusion of technological applications. These dispersed networks are all the

more necessary given that GNSS diffusion, as well as ICT demand, is influenced by

network externalities and thus by a wide geographical availability of applications.

Table 13.8 Cognitive/geographical/structural properties and the phases of the knowledge value

chain

Knowledge exploration

Knowledge

integration Knowledge exploitation

Cognitive

properties

Research and fundamen-
tal knowledge

Engineering
knowledge

Market-related knowledge

Geographical

properties

Highly clustered in a
couple of places

Pipelines, cluster
relatedness

Dispersed and covering the
European area

Structural

properties

Periphery Core and periphery Core
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Finally, considering the combination of the structural and geographical dimen-

sions, new findings in economic geography and knowledge economics emerge.

Table 13.8 summarizes these findings, crossing the knowledge phases with the

cognitive, structural and geographical statistics of the GNSS network.

The most noteworthy result is the negative linear relationship between the

geographical and structural concentration of knowledge interactions. This means

that the more projects are embedded in a highly cohesive structure, the less

knowledge relations are clustered in particular locations. The fact that geographi-

cally clustered relations are “located” in the periphery of the network of projects

does not mean that clusters host organisations that are poorly connected among

themselves. Recall that Table 13.6 showed that the seven main clusters display an

internal density higher than the average density of the network as a whole. On the

contrary, clusters are highly cohesive sub-structures of knowledge relations focused

mainly on explorative projects that are poorly connected to the core of projects of

the European network. At the other extremity, the core of collaborative projects

hosts organisations that are scattered across the European area. Between these two

extremes, an intermediate level of geographical dispersion corresponds to the

interconnection between clusters that supports the integration knowledge processes.

This negative linear relationship can be explained by the industrial and spatial

organization that supports the viability of the GNSS technological field. If we

suppose the GNSS network in the period under investigation to be in a particular

stage of its endogenous dynamics, its core/periphery and cluster/pipeline structure

will reflect its particular stage of maturity. If clusters have been considered in the

literature as efficient structures of knowledge production, their existence and their

high performance are not sufficient conditions of high performance in the techno-

logical field as a whole. To reach maturity, a technological field needs to be

supported by a high level of spatial diffusion supported itself by the existence of

norms, compatibility and interoperability. The existence of pipelines and the

spatially dispersed core of the network is thus the illustration that the GNSS

technological field has reached a certain level of maturity during the period under

study. Nevertheless, an excess of cohesion in the network can be interpreted as a

lock-in condition that excessively scleroses the knowledge dynamics at work within

the network. That is why, as previously said, the periphery of the network is a

condition of its viability, because it can introduce fresh ideas and new knowledge in

order to strengthen and extend the increasing part of the curve of the technological

life cycle, part in which clusters play a critical role.

13.8 Conclusion

Our results highlight how knowledge spills over geography and relational struc-

tures, and how a particular technological field structures itself along its knowledge

value chain. The salient outcome is the negative linear relationship found between

geographical cluster/pipeline and structural core/periphery structures in the

13 Collaboration Networks in the European GNSS Industry 257



European GNSS technological field. We have shown that clusters are critical loci

for exploration processes in the upstream phase of the knowledge value chain and

contribute to the growth of the technological field. But clusters, in spite of the focus

they constitute for innovation policies, do not contribute alone to the market success

of technologies. At the periphery of the knowledge network, clusters play a critical

role by preserving a pool of new and upcoming exploitable knowledge. But the new

ideas in a technological field will be turned into mass market products if, in the

downstream knowledge phase of integration and exploitation, tradable goods and

technologies remain on a high level of spatial diffusion and technological standard-

ization. So the viability of the technological field will depend on the existence of a

cohesive structure of relations in the core of the network of knowledge projects that

involve dispersed and distant organisations.

In terms of policy perspectives, our findings suggest that networks and geogra-

phy matter for innovation. Policy makers have to deal with these two dimensions

jointly. Indeed, on the one side, nations have progressively targeted their policies

from an industrial policy focus, generally governed at the national level, to a more

decentralized and regional emphasis, with the development of clusters policies.

Such a move towards the increasing role of regions in knowledge-based economies

is consistent with the necessity to support leading places in technological domains.

On the other side, the creation of the European Research Area has certainly

participated to a better dissemination of knowledge in Europe and then an increas-

ing capacity to integrate separated pieces of knowledge to foster innovation. But

our findings suggest that these two sides need to be strongly related and more

coordinated at the European level. If regional or national clusters policies have

definitely increased the capacity of regions to explore new technological domains,

the chance to transform them into future dominant designs depends on the ability of

clusters to be connected to largest networks (Frenken et al. 2009).
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Part IV

Impact of R&D Networks and Policy
Implications



Chapter 14

Proximity and Stratification in European

Scientific Research Collaboration Networks:

A Policy Perspective

Jarno Hoekman and Koen Frenken

Abstract In this chapter we introduce a framework to understand the geography of

scientific research collaboration with an emphasis on empirical studies that evaluate

the policy efforts to create a ‘European Research Area’ (ERA). We argue that the

geography of scientific research collaboration follows a logic of proximity that

provides researchers with solutions to the problem of coordination, and a logic of

stratification that provides researchers with differential means to engage in collab-

oration. The policy efforts to create ERA can then be understood as strategic policy

interventions at the European level that affect the form and nature of both struc-

turing principles. More specifically, the aim of reducing ‘fragmentation of research
activities, programmes and policies’ affects the importance of several forms of

proximity vis-à-vis each other, while the promotion of ‘research excellence’ results
in new forms of network stratification at multiple spatial scales. We provide an

overview of recent empirical findings to illustrate these claims, and discuss poten-

tial implications for future ERA policies.

14.1 Introduction

Probably the largest transnational policy effort affecting the current geography of

scientific research collaboration is the effort by the European Commission (EC) to

create a European Research Area (ERA). The objective of ERA policy is to

overcome “fragmentation of research activities, programmes and policies across
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Europe” (Commission 2007, p. 2) by removing “barriers to the free flow of
knowledge” (European Council 2008, p. 5). This aim is pursued through direct

funding of collaborative research projects, mobility schemes and streamlining of

research policies. The Framework Programmes (FPs) of the European Commission

(EC) constitute one of the main instruments to realize the ERA vision. They are

specifically designed to pool resources and promote international scientific collab-

oration between EU member states by enabling and intensifying interactions among

researchers. Ever since its inception, research budgets for the FPs have been on the

rise and the budget for Horizon 2020 indicates a substantial increase over

previous FPs (Commission 2013).

Despite the substantial resources supporting ERA policy, clarity is still lacking

about what the ERA vision entails and about the rate of progress in moving towards

this vision. Reading from EC policy documents, ERA is conceived as “an ‘internal
market’ in research, an area of free movement of knowledge, researchers and
technology” (Commission 2002, p. 4). From a geographical perspective, this vision

is expressed in policy efforts to reduce the significance of spatial barriers that hinder

European-wide research collaboration such as those following from regional and

national boundaries. Yet, the intended geographical effects of these efforts are

uncertain and the abstract nature of the vision masks the fact that there are trade-

offs between more specific objectives defined under the heading of ERA policy. For

instance, there has been much concern that competitive research policies compro-

mise the cohesion objective of the European Union (Sharp 1998; Begg 2010) as

those policies are not intended to intervene in the European scientific and techno-

logical landscape at large, but to bundle resources with the purpose of supporting

collaborative efforts between ‘excellent’ researchers in a few strategic scientific

fields.

Against this background, the goal of this chapter is first to introduce a conceptual
framework that can be used to understand the geography of scientific research

collaboration and second to review recent empirical studies on the structuring

principles of this framework in the context of ERA. Our conceptual framework

starts from the observation that the geographical structure of scientific collaboration

networks can be understood from the joint outcome of a logic of proximity and a

logic of stratification (Hoekman et al. 2009). In the review we specifically focus on

empirical studies that have addressed research collaboration in the scientific domain

using (co-)publication data.

The remainder of this chapter is structured as follows. In the next section we

provide a theoretical introduction to the geography of research collaboration. We

subsequently pay attention to proximity and stratification as two organizing prin-

ciples of research collaboration and show how they are affected by the European

policies to create ERA. The implications of our findings are discussed in the

concluding section.
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14.2 Geography of Research Collaboration

The geography of research collaboration deals with the question how space struc-

tures collaborations between researchers, and how aggregates of such collabora-

tions constitute spatial networks between locations that can be studied using spatial

scientometric tools (Frenken et al. 2009). In this framework, research collaborations

are structured according to a logic of proximity that provides solutions to the

problem of coordination, and a logic of stratification that provides differential

means to engage in collaboration (Hoekman et al. 2009). These logics are not

stable over time but change as a consequence of globalisation. Globalisation

follows from a process of time-space compression (Harvey 1990), which is made

possible by advancements in transportation and ICTs. At the same time, globalisa-

tion is governed by institutional harmonisation at the transnational level as envis-

aged for instance by transnational institutions such as the European Commission.

These institutions may directly affect the geography of collaboration through

funding of international collaborative research, but also indirectly through the

alignment of research agenda’s and infrastructures between territories.

The understanding of space needs to be explicated in this context as contempo-

rary geographers have provided multiple conceptions of place and space which

refer to material as well as to perceptual dimensions (e.g. Lefebvre 1991; Massey

2004). We start from the physical location of individuals on the Euclidean surface

and their media of communication and movement. Given these general elements,

space can be defined as a fundamental material dimension that provides settings of

interaction as a time-sharing activity between individuals (Hägerstrand 1970;

Giddens 1984; Harvey 1990). This materiality can be both conceived in terms of

places where researchers are co-present, as well as in terms of flows which allow for

time-sharing activities at a distance (Castells 1996).

One can argue that research collaborations always involve some form of time-

sharing activity between individuals, although it has been notoriously difficult to

provide more exact definitions (Katz and Martin 1997). Traditionally, these settings

of interactions follow from moments of physical co-presence when researchers

meet at certain locations and interact with one another face-to-face. The complex

nature of scientific activities makes this form of interaction essential as some

aspects of knowledge are tacit, implying that they “cannot be put into words”
(Polanyi 1958, p. 4) or “cannot be or – have not been – set out or passed on in
formulae, diagrams or verbal descriptions and instructions for actions” (Collins

2001, p. 72). Acquisition of this knowledge therefore necessitates ‘enculturation’

between researchers ranging from short-time visits to institutionalization in ‘mas-

ter-apprentice relations’ (Collins 1985). Furthermore, moments of co-presence

facilitate the establishment of trust through the sensory effect that individuals

have on one another when they are co-present (Simmel 1997; Urry 2000) which

is essential to establish the credibility of research findings (Shapin 1995).

The materiality of space and the indivisibility of the body set limits on the

co-presence of individuals in these settings of interaction. Individuals can only be at
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one location at the same time and movement in space involves movement in time

(Hägerstrand 1970). Research collaborations that rely on moments of co-presence

are thus structured by the location of scientists vis-à-vis each other and their means

of mobility when they intend to meet. It follows that collaborating scientists may

need to co-locate depending on the necessary frequency of co-presence and the

advancement of media of mobility. More specifically, when either the necessary

frequency of co-presence is high or the means of mobility are low, it becomes a

necessary condition that researchers work in close physical proximity on a perma-

nent base. In time-space geography this condition is visualised using time-space

prisms that show the absolute boundaries of individual movement in space given

that he/she needs to ‘bundle’ with other individuals at a particular moment in the

future (Hägerstrand 1970).

Technological advancements provide the possibility to relax the necessary

overlap between co-presence and co-location (Torre and Rallet 2005). Transporta-

tion technology, the development of related material infrastructure and a relative

decline in the costs of mobility have rendered a ‘shrinking of distance’ (Janelle

1969) in terms of the time and money needed to travel from one location to the

other. As a result individuals can travel longer distances than in the past without

necessarily travelling longer. This process extends the spatial range that a

researcher can cover given that s/he wants to return to his/her permanent location

within a particular time-frame. Spatial range is not a simple function of the

kilometric distance between the permanent location of researchers because the

material infrastructure that supports differential means of mobility

(e.g. highways, airports) is unequally distributed in space. Moreover, the actual

perception of distance is a subjective matter and differs between individuals

according to their mental maps (Milgram and Jodelet 1976).

Information technologies also make physical proximity on a permanent base less

of a necessity, since researchers can interact through the material infrastructure that

supports flows of communication between distant locations (Torre and Rallet

2005). In this context, Castells (1996) notes that these technologies create new

spaces of their own which are not constituted by traditional settings of interactions

based on co-presence, but are materialised in ‘circuits of electronic exchange’ that

support time-sharing practice without physical proximity. As such, space can no

longer be conceptualised based on physical proximity alone but its materiality

should also be conceived in terms of flows and their particular spatial forms.

However, despite technological advancements, the substitution of communica-

tion technologies for moments of co-presence is limited. Olsen and Olsen (2000)

question in this respect whether this substitution process can ever be perfect as

modern media hinder the unique establishment of common reference frames and

mutual understanding through amongst others rapid feedback, pointing and refer-

ring to objects in real space (i.e. acquiring ostensive knowledge), subtle communi-

cation, informal interaction before and after ‘meetings’ and a shared local context.

Thus, a main tenet of the geography of research collaboration holds that despite

technological advancement, the friction of distance still exerts gravitational force

on collaborative knowledge production.
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14.3 Logic of Proximity

Physical proximity between researchers provide solutions to the problem of coor-

dination in actual collaborative practices which is a main concern surrounding the

uncertain activity of knowledge production. Coordination involves the creation of

alignments between researchers by integrating different pieces of a research project

in order to accomplish collective tasks (Cummings and Kiesler 2007). As argued

above, moments of co-presence are essential to create such alignment.

However, the exact intensity and duration of moments of co-presence that is

necessary for successful coordination is conditioned by proximities other than

physical proximity, which may already exist between collaborating researchers

(Boschma 2005). Already established proximities mediate the success of coordi-

nation given a certain amount of co-presence. For example, researchers that already

collaborated in the past created social and cognitive proximity which facilitates

future collaborations. They will be more effective in communicating by means of

ICTs because trust and common references frames have already been established

(Amin and Roberts 2008). Hence, the need for co-presence is expected to decline

over time in repeated collaborations. It has also been shown that there is less need

for co-presence in research collaborations between universities than in university-

industry research collaborations as in the former institutional proximity is already

established at different locations, whereas in the latter it is not (Ponds et al. 2007).

Physical proximity between researchers is in itself neither a necessary nor a

sufficient condition for successful research coordination, although it facilitates the

establishment of other forms of proximity via moments of co-presence (Boschma

2005). As a result, most forms of proximity are geographically localized as they are

established through recurrent moments of co-presence between researchers. For

instance, socio-cognitive proximities established on the basis of previous moments

of co-presence are often sustained in localised networks. Breschi and Lissoni

(2009) show for instance that researchers’ embeddedness in social networks decays

with geographical distance. Storper and Venables (2004, p. 367) consider cities a

main stage where socio-cognitive proximities are sustained by making reference to

their importance for “getting into loops which are associated with collocation”.
Others have in this context pointed towards “being there” (Gertler 2003) and “buzz”
(Bathelt et al. 2004) as organising principles for socio-cognitive systems that are

bounded in space (see also Howells 2002).

Moreover, institutional proximities as defined by common ‘rules of the game’

(North 1990) that are enforced in particular locations are almost by definition

geographically localised. In science, institutional proximity has historically been

created at the national level by building national education systems and creating

specific technological capabilities in order to stimulate economic growth (Lundvall

1988; Crawford et al. 1993). As a result there are many key institutional settings

with national significance in research funding schemes, research infrastructures,

research assessments, education systems, intellectual property regimes and labour

markets, amongst others (Crescenzi et al. 2007). In addition to these national
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institutions, the emphasis on regional competiveness as an important policy goal

has also contributed to a plethora of regional institutions that create institutional

proximity between researchers at the sub-national level (Bristow 2005).

14.3.1 Proximity and ERA

European policy interventions to create ERA affect the spatiality of proximity

dimensions in multiple ways. First, direct funding of transnational research projects
and mobility schemes is expected to facilitate moments of co-presence between

European researchers that are often not located in close physical proximity to each

other. The main policy instruments to achieve this goal are FP projects with a

temporal character, but also long-term collaboration networks such as the Virtual

Knowledge and Innovation Communities that have recently been created under the

heading of the European Institute of Innovation and Technology’s (EIT) are

important in this respect. The European character of these efforts follows from

formal allocation criteria of funding that require the inclusion of researchers from

multiple European member states. Given the pervasive geographical localization of

research collaboration, these collaborative projects are unlikely to emerge in similar

structure without strategic policy intervention. Hence, funding of collaborative

research projects is instrumental in the creation of ERA through the establishment

of novel socio-cognitive proximities between physically distant researchers. In

doing so the EC aims to remove spatial barriers – especially national borders –

that hamper collaboration between different nation-states within Europe.

Second, ERA policy is also expected to be instrumental in aligning regional and

national institutions in which new forms of research collaboration may eventually

become embedded. Initiatives to achieve this goal include ERA-NET that aims to

counteract the fragmentation of national research policies and funding schemes

between separate member states by networking and streamlining activities;

ERA-WATCH that benchmarks information on the research policies and research

systems of member state; ESFRI that coordinates investments in pan-European

research infrastructures; and the Joint Programming Initiatives in which member

states reach agreements on Strategic Research Agendas to address major societal

challenges. In these programmes institutional alignment is realised through an

Open Method of Coordination (OMC) which is characterised by soft regulations

such as guidelines, indicators, benchmarking and learning through best practice.

There are no official sanctions in OMC as it is believed that the method’s effec-

tiveness is ensured through a form of peer pressure and a process of ‘naming and

shaming’. As such this instrument functions as a catalyst for harmonisation between

national policies.

The rate of progress towards the creation of ERA in science has been assessed by

monitoring the evolution of spatial collaboration networks constructed from pub-

lication as well as from FP project data. The empirical results presented in these
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studies demonstrate that the incidence of cross-border research collaboration in

Europe is increasing over time which goes at the expense of scientific research

collaborations within sub-national regions and nation-states. More specifically,

co-publication activities in Europe show a gradual tendency towards European

integration judged from the observation that the importance of territorial borders

reduces over time (Mattson et al. 2008; Hoekman et al. 2010; Chessa et al. 2013).

There is evidence that (part of) this process of integration results from funding

provided through the FPs. Hoekman et al. (2013) show for instance that the number

of co-publications between international European regions is positively affected by

joint participation of these regions in FP projects, even after controlling for prior

co-publication activity.

Although these empirical results indeed suggest that ERA policy reduces frag-

mentation of scientific research activities across Europe, the findings have been

qualified in a number of different ways. First, although there seems to be a tendency

towards European integration, Europe’s scientific landscape continues to consist

mainly of a collection of regional and national research systems. This finding has

been observed in studies using gravity models indicating that in the European

context regional, national and language borders continue to have a large and

independent negative effect on co-publication activity (Maggioni and Uberti

2009; Hoekman et al. 2009).

Second, although we observe that there is an increase in cross-border collabo-

ration in the last decade, there is no evidence that the influence of physical

proximity on structuring research collaborations is decreasing over time. This result

may be surprising as we would expect internationalisation to go hand in hand with a

decreasing effect of distance. However, although ERA policy is effective in reduc-

ing the importance of national borders, researchers continue to orient themselves

mainly towards physically proximate, but possibly cross-territorial, partners. This

observation particularly holds for the new member states of the European Union,

which are rapidly catching up in scientific activity (Hoekman et al. 2010).

Third, when using co-publications to compare the growth of international sci-

entific research collaboration between EU member states and non-EU OECD

members, Chessa et al. (2013) observes that ever since 2003, international research

collaboration within the EU is not growing at a more rapid pace than international

collaboration between other OECD members. This result raises doubt on the extent

to which ERA policy is effective in stimulating cross-border research collaboration

and suggest that (part of) internationalization of science should be rather explained

by a more general process of time-space compression following from mobility and

ICT advancements.
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14.4 Logic of Stratification

Science is a stratified institution as evidenced by the observation that “power and
resources are concentrated in the hands of a relatively small minority” (Cole and

Cole 1972, p. 368). Expressed in quantitative terms, the productivity of scientists

follows a rank-size distribution where there are only a few scientists with very high

productivity and many with low productivity (Price 1963; Stephan 2012).

According to the sociology of science the unequal distribution of productivity

reflects itself in the reward system that gives credit where credit is due, therefore

effectively providing productive researchers with more recognition (Merton 1973).

Recognition is not an isolated property based on past achievement alone. Rather, it

is part of a cumulative cycle of conversion that conditions “scientist’s abilities

actually to do science” (Latour and Woolgar 1986, p. 198). Within this cycle,

recognition can be transformed in instrumental assets such as money, equipment

and data. Researchers ‘invest’ in these assets to produce new scientific knowledge

with the intention of ‘earning back’ recognition with ‘interest’ after a complete

cycle (Hessels 2010). Positive feedback mechanisms exist in the system and they

may increase the interest rate to investments based on already established reputa-

tions of researchers (Merton 1973; Stephan 2012). Such positive feedback mecha-

nisms are for instance observed when studying the attribution of reward as visible in

scientific citations (Peterson et al. 2010)

Research collaboration is also a way to gain and sustain recognition as collab-

oration provides access to resources such as research infrastructure, information

and training. Moreover, collaboration creates networks through which scientific

knowledge and researchers’ own reputation diffuses (Beaver and Rosen 1978). In

doing so, the embeddedness of researchers in networks is a medium to mobilise

‘allies’ and to convince peers about the significance of research results (Latour

1987).

The structure of research collaboration that follows from this reward system can

be considered an emergent, self-organising system insofar the selection of research

partners is based upon choices made by researchers themselves, irrespective of their

locations (Wagner and Leydesdorff 2005). However, these ‘footloose’ choices can

only be made when researchers have the resources to organise the settings of

interaction that are necessary for successful coordination of research collaboration

in the first place. In this respect, the unequal distribution of rewards and its

reinforcement through positive feedback mechanisms makes some researchers

more footloose than others because it provides researchers with differential

means to access mobility technology and ICTs. It follows that physical distance

becomes relatively less of a concern for researchers with higher reputation as they

have the resources to organise moments of co-presence on a temporal base.

Reputable researchers are also more attractive collaborators and as a result other

researchers have a higher preference to be co-present with them (both for training

and collaboration).
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Given this logic of stratification, the structure of scientific collaboration net-

works follows a ‘preferential attachment’ process which is especially observed for

early-career researchers and young talent (e.g. Ph.D.s, post-docs). The minority of

researchers with a high reputation are in this case like ‘magnets’ for the (yet) less

reputable ones which makes it relatively easy for the former to hire new personnel,

potentially over large distances. Mahroum (2000, p. 372 and p. 376) notes in this

respect that “mobility is a premier agent of scientific expansion [where] highly
talented scientists flow to scientific institutions that are reputed for their excel-
lence”. In this collaboration structure, reputable researchers have the means to

collaborate over large distances and they can also organize the conditions to

efficiently collaborate with peers in close vicinity. In contrast, it is expected that

less reputable researchers will collaborate in closer proximity to their permanent

location and that they choose more often to move on a permanent base to another

location where they can be co-present with more reputable researchers.

14.4.1 ERA and Stratification

ERA policy on the stratification of scientific research collaboration networks starts

from the observation that current research activities are already unevenly spatially

distributed in Europe, even more so than economic activity (see Frenken et al. 2007;

Matthiessen et al. 2010). Figures 14.1 and 14.2 show for instance that scientific

publication output as well as scientific publication output per capita is concentrated

in a group of ‘core’ regions located in a Western European axis stretching

south-east from London towards Rome, in Scandinavian regions and in some

large city-regions located in other parts of Europe (e.g. Berlin, Budapest, Glasgow/

Edinburgh, Madrid, Vienna). This spatial pattern of knowledge activities was

already present before the initiation of ERA policy (Moreno et al. 2005; Crescenzi

et al. 2007).

A key question of ERA policy is whether it should further support those

agglomerative tendencies by strengthening collaborations network between these

agglomerations or whether it should allocate funding to peripheral actors as to

provide these actors with opportunities to connect to the already established core of

knowledge producing actors. The trade-off is reminiscent of the more general

tension between EC’s cohesion policy and research policy which both constitute

significant shares of the European budget. In this respect, place-based cohesion

policy provides resources to Europe’s poorest regions. A major goal of these efforts

is to strengthen the scientific capabilities of these cohesion regions through various

instruments focused on scientific research infrastructures, network development

and knowledge transfer (Musyck and Reid 2007; Begg 2010). In doing so, cohesion

policy intends to support structural conditions that facilitate participation in ERA.

However, the actual participation rates in ERA is dependent on the allocation of

research funds which is determined by EC’s research policy rather than cohesion

policy. As a result there have been worries that over the subsequent FPs the
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Fig. 14.1 Total number of publications in 2000–2007

Fig. 14.2 Total number of publications per capita in 2000–2007
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rationales and goals of the FPs have changed to such an extent that the cohesion

objective no longer plays a role in the selection of FP projects that are being funded

(Sharp 1998; Breschi and Malerba 2009). Rather ERA policy is increasingly

focused on stimulating ‘virtual centres of excellence’ (Commission 2007, p. 15)

that strive to maximize the research potential of the European territory as a whole. It

follows that over the successive FPs, funding has become increasingly based on

criteria of research quality (i.e. scientific excellence), socio-economic relevance

(i.e. tackling societal challenges and innovation potential) and critical mass, rather

than on a redistribution criterion.

Turning to the empirical evidence on allocation of funding, Sharp (1998) found

that funding in FP3 and FP4 favoured core regions only in absolute terms which

was expected given the sheer number of researchers in these regions. Yet, after

controlling for size peripheral countries managed to acquire more funding relative

to their total research capacities. This finding was in line with the redistribution

objective of the FPs at that time which treated proposals that included researchers

from less developed regions as more favourable. In a more recent analysis,

Hoekman et al. (2013) did not find the same result for FP5 and FP6; instead, they

even observed that allocation of FP funds marginally increases with prior

co-publication activity. Compared to earlier FP funding this finding can be

interpreted as a move towards excellence, although the observed effect of ‘excel-

lence’ funding remains is limited as of yet.

Part of the success of policy efforts to create more cohesive collaboration

structures also depends on the extent to which funding is allocated to already

established performers in terms of scientific collaboration networks. A number of

empirical studies show in this respect that – similar to existing scientific research

collaboration structures – the number of links between organisations in FP projects

tends to decay with geographical distance and language barriers (Scherngell and

Barber 2009, 2011; Maggioni and Uberti 2009), although these effects become less

important over the successive FPs (Scherngell and Lata 2012). Importantly

concerning stratification, it seems difficult for unconnected actors to acquire a

central position in the FP funding networks. Breschi and Cusmano (2004),

Autant-Bernard et al. (2007) and Wanzenböck et al. (2012) analyse the social

network structures among FP participants and find that the funded collaboration

networks are dominated by a small ‘oligarchic core’ (Breschi and Cusmano 2004,

p. 748) of research actors, whose central network positions in the programme have

only strengthened over the successive funding rounds. This implies that participants

are much more likely to acquire FP funding when they were already participating in

previous FPs (Paier and Scherngell 2011), and that peripheral participants experi-

ence difficulties to enter the FP networks.

Turning to the effect of FP funding on the geography of scientific research

collaboration, Hoekman et al. (2013) found that the effect of the FPs on raising

co-publication output decreases when funding is allocated to regional pairs with

already established scientific collaboration networks. This suggest that the FPs are

more effective in establishing ties between poorly connected regions than in further

strengthening existing ties between core regions. They conclude on the base of
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these findings that the effect of funding on raising co-publication output seems

strongest in poorly performing regions, despite the fact that more resources flow to

well performing regions.

14.5 Conclusion

Scientific research collaboration across territories is believed to be beneficial for the

production and diffusion of scientific knowledge. However, long distance collabo-

ration is still significantly hampered by the dominance of localised interactions

within national and regional systems and by agglomeration dynamics that put a

prime on face-to-face contact. Against this background, the efforts of the European

Commission to create a European Research Area (ERA) is a significant attempt to

overcome fragmentation and to increase excellence in the European scientific

research system.

This chapter introduced proximity and stratification as two organizing principles

that can be used to understand the geographical structure of European scientific

collaboration networks. Concerning proximity we noted that despite efforts to

integrate scientific research activities across borders, Europe remains a loosely

connected group of national and regional science systems. With respect to stratifi-

cation we concluded that there exists a tendency, even if small, towards excellence

in funding, but that the effect of this policy in terms of raising cross-border

scientific research collaborations remains questionable.

Given the substantial resources that have been spent on realizing ERA since its

inception in 2000, it can be argued that this empirical reality is contrary to

expectations. A more detailed assessment of the reasons for the observed lack of

geographical effect of ERA policy seems therefore warranted. One straightforward

explanation may be that despite substantial funding, European research budgets

remain a minor funding source when compared to with national and regional

research budgets. If this is indeed the case we may expect more from the Horizon

2020 programme that shows an increase in funding over previous programmes and

stresses the significance of excellence as evidenced amongst others by the expan-

sion of the European Research Council.

Another reason for the persistence of physical proximity in scientific research

collaboration may be that the nature of the problems being studied in scientific

collaborations have become increasingly complex over time, necessitating equally

frequent moments of co-presence, despite advancements in ICTs and mobility.

Such an increase in complexity may follow from the internal dynamic of science

where researchers create new forms of ‘complementarities’ between specialised

fields of knowledge and heterogeneous groups of organisations (Bonaccorsi 2008).

They may also be driven by external pressures of governments and society to come

up with solutions to ‘grand challenges’ (Gibbons et al. 1994; Nowotny et al. 2001).

The identification of such complex thematic goals in recent ERA policy documents

is illustrative of this phenomenon.
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In light of our findings, it seems essential to monitor and evaluate the geograph-

ical effects of ERA policy efforts in future studies. It is encouraging that evidence

based evaluation is slowly becoming an important pillar of EC’s research policy. At

the same time, it should be realized that impact assessments based on bibliometric

data provide only a partial window on the state and dynamics of ERA. Despite the

validity of these indicators in the scientific domain, our conclusions should be

interpreted with caution when extrapolating to other contexts. Yet, when treated

with appropriate caution such data can provide useful comparative empirical

evidence that is both compelling and politically informative.
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Wanzenböck I, Scherngell T, Lata R (2012) Embeddedness of European regions in EU funded

R&D networks: a spatial econometric perspective. Paper presented at the first Eurolio Euro-

pean Seminar on Geography of Innovation, 26–28 Jan 2012, Congress Center, Saint-Etienne

14 Proximity and Stratification in European Scientific Research Collaboration Networks 277

http://dx.doi.org/10.1111/j.1435-5957.2012.00419.x


Chapter 15

The Embeddedness of Regions in R&D

Collaboration Networks of the EU

Framework Programmes

Iris Wanzenböck and Barbara Heller-Schuh

Abstract This article focuses on the embeddedness of European regions in net-

works of R&D collaborations of the EU Framework Programmes. Network

embeddedness is defined in terms of network analytic centrality measures calcu-

lated for organisations and aggregated to the regional level. The objective is to

estimate how region-internal and region-external characteristics affect a region’s

positioning in the thematic networks of Information and Communication Technol-

ogies, Sustainable Development and Life Sciences. In our modelling approach, we

employ panel spatial Durbin error models, linking a region’s centrality in the

network to knowledge production and general economic characteristics of regions,

and their neighbours, respectively. We found evidence that financial R&D

resources, human capital and the level of socio-economic development are impor-

tant general determinants of a region’s network positioning. By linking European

R&D networks with regional innovativeness, the study provides important impli-

cations for setting priorities in a regional innovation policy context.

15.1 Introduction

In the recent past, Research, Innovation and Technology (RTI) policies have

emphasised supporting interactions and networks between organisations of the

innovation system. At the EU level, the key policy instruments are the EU Frame-

work Programmes (FPs) that support pre-competitive R&D projects, creating a pan-

European network of organisations performing joint R&D. This policy focus is

based on theoretical and empirical literature on the economics of innovation that

emphasises two arguments in this respect: First, interactions, research collabora-

tions and networks of actors are crucial for successful innovation (Powell and
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Grodal 2005; Fischer 2001), and, second, innovation and knowledge diffusion are

the key vehicles for sustainable economic competitiveness (Romer 1990).

Furthermore, the close relationship between organisational innovativeness and

the regional environment in which organisations are locally embedded has been

emphasised in Regional Science and Economic Geography (Asheim and Gertler

2005). Recent literature streams in these fields lay particular emphasis on long-

distance R&D alliances, highlighting their role for localized knowledge production

structures (Asheim et al. 2011; Boschma and Frenken 2010). This is also central to

the idea of this study, assuming that participation of organisations in inter-regional

R&D networks enhances not only the organisations own innovation capability, but

also indirectly – due to the presence of geographically localised knowledge spill-

overs (Breschi and Lissoni 2009; Karlsson and Manduchi 2001) – spurs innova-

tiveness of the entire regional innovation system (Cooke et al. 1997).

The focus of the study is on regional characteristics that affect embeddedness of

European regions in R&D networks as captured by the participation in joint R&D

projects. Network embeddedness is defined in terms of centrality as applied in the

Social Network Analysis (SNA) literature calculated for organisations and aggre-

gated to the regional level. It is assumed that vertices showing a more central

network position more likely benefit from network advantages in terms of prefer-

ential information and knowledge access within the network (Borgatti 2005;

Wasserman and Faust 1994). Since such a privileged network position of organi-

sations may be beneficial for the entire region, it is a crucial task for regional policy

to provide framework conditions that stimulate participation intensity of organisa-

tions in inter-regional R&D networks. Thus, we aim to identify region-specific

characteristics that influence a region’s embeddedness in European R&D networks,

such as knowledge production capacities, technology-related conditions, agglom-

eration effects and economic structure. Further, we consider the influence of the

characteristics of neighbouring regions referred to as inter-regional spatial spill-

overs (Fischer et al. 2009).

In this study we apply an innovative approach, representing the network struc-

ture at the organisational level by the means of a bipartite graph, while at the same

time keep the regional focus that is our relevant unit of analysis in our panel spatial

Durbin error modelling (SDEM) approach (Le Sage and Pace 2009; Elhorst 2003).

We construct the thematic R&D collaboration networks for 241 NUTS-2 regions of

the EU-25 countries for the years 1998–2006 using data on joint FP projects in the

thematic fields of Information and Communication Technologies, Life Sciences

and Sustainable Development. Individual analysis of thematic R&D networks

allows us to explicitly account for peculiarities in the way of performing R&D.

The remainder of the study is organised as follows. Section 15.2 sets forth the

theoretical background and derives the main hypotheses for the empirical analysis.

Section 15.3 clarifies the notion of network embeddedness, and outlines our mea-

surement approach to empirically observe the network positioning of a region from

a SNA perspective. Section 15.4 formalises the panel version of the SDEM

approach and introduces our set of regional characteristics, before Sect. 15.5 pre-

sents the estimation results. Section 15.6 concludes with a summary of the main

results and some policy implications.
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15.2 A Regional Perspective on R&D Network

Embeddedness

Today it is widely agreed that joint R&D activities, networks and collaborations are

conducive to knowledge production and successful innovation (Powell and Grodal

2005). Firms, universities and research organisations increasingly search for exter-

nal knowledge sources in order to keep pace in the global competition on ideas,

technological developments and innovative products. In this regard, R&D networks

have been increasingly recognized as efficient approach to access external, often

spatially distant, knowledge in a rapid and targeted way (Hoekman et al. 2009).

The spatial structure of R&D networks has gained particular interest in recent

scholarly research on the geography of innovation (see, for instance, Scherngell and

Lata 2013; Autant-Bernard et al. 2007). In essence, this is based on observations

that R&D capabilities tend to be spatially concentrated in a certain regional envi-

ronment (Asheim et al. 2011), and that locally embedded actors frequently search

for knowledge sources located in more distant geographical spaces to refine their

own knowledge base with very specific knowledge components (Scherngell and

Barber 2009; Maggioni et al. 2007). To access new knowledge that is not available

within spatial proximity, innovative actors more and more rely on longer-distance,

cross-regional R&D collaborations, for instance in the form of joint R&D projects,

or joint assignment of patents or co-publications. Often there are specific key

players – universities, research organisations, large knowledge-intensive or small

highly specialised firms – that are the important driving forces in establishing and

maintaining such inter-regional links of knowledge transmission (Morrison 2008).

One basic theoretical assumption in this context is that these key players act as

levers for knowledge diffusion to the regional environment. Knowledge gained by

such inter-regional network channels may be injected to intra-regional knowledge

diffusion channels, and, by this, enhance the general knowledge transmission

dynamics within the regional system (Giuliani 2007; Bathelt et al. 2004). In this

sense, it is assumed that the innovativeness of a region depends not only on internal

conditions for knowledge production and diffusion, but also on the ability of its

actors to identify and quickly access region-external knowledge sources, and by

this, on their ability to participate in inter-regional R&D networks.

Following network theoretical considerations, not only being part in a network

but the strategic positioning is essential to reap full benefits of networking connec-

tions, in Social Network Analysis (SNA) referred to as centrality or prestige of an

actor (Wasserman and Faust 1994). For R&D networks, this implies that organisa-

tions involved in several collaborative arrangements are well interlinked to other

organisations, show short pathways to diverse sets of nodes, and therefore, take up a

central position within the whole knowledge network (Borgatti 2005). They act as

hubs or gatekeepers for knowledge diffusion, spreading knowledge throughout

several actors in the entire network. In this sense, not only the organisations own

knowledge bases, but also the knowledge to which the respective organisation has
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direct or indirect access through its network links determines its prestige in the

network (Powell et al. 2005).

However, the way in which R&D network links are established depends on the

technological regimes and prevailing research strategies in a specific field (Gilsing

et al. 2008) and differs due to the geographical, technological or institutional

background of the collaborating actors (Paier and Scherngell 2011; Boschma and

Frenken 2010; Scherngell and Barber 2011; Ponds et al. 2007). Beyond the

dyadic level, studies at the network level reveal remarkable variations in the

structural properties of R&D networks across research areas and thematic priorities

(see, for instance, Barber et al. 2011; Heller-Schuh et al. 2011). We therefore

assume that specific characteristics of research processes in different thematic fields

influence the composition of the network structure, and in turn, the positioning of

actors in the network.

In this study we focus on the centrality of actors across regions in distinct

thematic networks of R&D cooperation constituted under the heading of the EU

FPs. The FPs create a pan-European network of actors performing joint R&D by

supporting pre-competitive R&D projects (Breschi and Malerba 2009). A central

embeddedness of these actors in FP networks may ease the establishment of

contacts to strategic important region-external knowledge sources that might –

given the theoretical considerations above – stimulate region-internal dynamics

and knowledge diffusion. From a Regional Science perspective, the question comes

to mind which local and global conditions drive the centrality of organisations

located in one region, and, by this, the overall regional visibility in FP networks of a

specific thematic field. Basically, a central position in R&D networks may be

determined by the overall characteristics of the regional innovation environment,

particularly reflected in the interrelation of region-specific knowledge production

capabilities, as well as economic and institutional conditions (Broekel and Brenner

2011; Fritsch and Slavtchev 2011; Rodriguez-Pose and Crescenzi 2008). In addi-

tion to region-internal factors that may drive a region’s centrality in the thematic

networks of R&D cooperation in Europe, we apply in our study a spatial perspec-

tive explicitly taking account of characteristics in neighbouring regions (Fischer

et al. 2009; Fischer and Varga 2003). The following hypotheses are to be tested:

i. We assume that knowledge production capacities in terms of financial and

human resources as well as a strong technological knowledge base are decisive

for reaching a certain network centrality. They enable to explore, exploit and

transfer knowledge from external sources, irrespective of the thematic field. We

further assume that specialised regions that supply distinctive technologies have

strategic advantages in thematic R&D networks, but the importance may vary

depending on the overall technological orientation of the specific thematic field.

ii. Concerning the effect of general economic conditions and agglomeration, we
assume that regions with a higher level of socio-economic development are more

centrally embedded in FP networks. Thismight specifically apply to urban regions

that host important scientific organisations and multinational firms that benefit

from domestic industrial agglomeration effects and at the same time more inten-

sively exploit external knowledge sources to keep path in global competition.
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iii. Finally, we assume that a region’s embeddedness in the European FP networks

is affected by indirect effects in the form of spatial spillovers from
neighbouring regions. Thus, we hypothesise that geographical space in terms

of regional interaction effects does matter in that research-related and general

economic conditions in neighbouring regions impact a region’s network

position.

15.3 Measuring Network Embeddedness of Regions

Social Network Analysis (SNA) provides a rich analytical toolset to observe

network structures and to characterise the role of specific actors in the network,

such as their centrality. In our study, network embeddedness refers to the centrality

of organisations – located in a specific region – in the European R&D collaboration

networks from a SNA perspective.

In our measurement approach, we account for the role of specific organisations

in the network, explicitly making use of the organisational level to identify a

region’s network embeddedness in the European network of R&D cooperation.

The centrality of a region i ¼ 1, . . ., n may then be viewed as the sum of all

centralities of organisations participating in the FPs that are located in that region i.
In the following, we formalise this approach by defining our network and the

centrality measures at the organisational level, and demonstrate how we come

back to the regional level of analysis in the context of our main research question.

To observe our networks of R&D collaboration in Europe, we draw on data from

the EUPRO database which provides comprehensive information on funded

research projects of the EU FPs and all participating organisations. For the study

at hand, we use data on projects running between 1998 and 2006 in three thematic

fields that are Information and Communication Technologies (ICT), Life Sciences
(LS) and Sustainable Development (SD).1

Our network is formalised by representing FP project collaborations at the

organisational level as a bipartite graph G(V ¼ V1 + V2, E), letting V1 be a set of

vertices representing u, v ¼ 1, . . .,m organisations participating in the FPs in year t,
and V2 be a set of l ¼ 1, . . ., L vertices representing FP projects funded in the same

1 In our definition of the distinct thematic areas of the FPs we basically follow the study of

Hoekman et al. (2012). Our thematic priorities consist of the following programme lines in the

distinct FP: FP4 programmes ENV2C, MAST3, JOULE and THERMIE, FP5-EESD,

FP6-SUSTDEV for Sustainable Development; FP4-BIOTECH2, FP4-BIOMED2 and

FP4-FAIR, FP5-Quality of Life, FP6-Food, FP6-LIFESCIHEALTH for Life Sciences;

FP4-ACTS, FP4-ESPRIT4 and FP4-TELEMATICS 2C, FP5-IST, FP6-IST for the thematic

priority ICT (Rietschel et al. 2009). The thematic areas we include make up 72.5 % of total

funding in FP5, and 63.3 % of total funding in FP6 (Hoekman et al. 2012). Details on the network

structure of the thematic FP networks are given in the Appendix.

15 The Embeddedness of Regions in R&D Collaboration Networks 283



year t, with an edge between two vertices if – and only if – one vertex is a project

and the other is an organisation that takes part in the project, giving rise to the set of

edges E. G is said to be bipartite when there are no edges between pairs of elements

within V1 or V2.

Note that one might simply define edges between organisations when the

organisations are separated by a path of length two in the bipartite graph to obtain

a one-mode organisational representation. The topology of our bipartite graph may

be encoded in the m � m adjacency matrix A for a given year t by

At u; vð Þ ¼
a11 a12 � � � a1m
a21 a22 � � � a2m
⋮ ⋮ ⋱ ⋮
am1 am2 � � � amm

0
BB@

1
CCA u, v ¼ 1, . . . ,m ð15:1Þ

where the element auv contains the collaboration intensity as measured in terms of

joint FP projects between organisations u and v. Furthermore, the number of edges

incident on a vertex u is called the degree ku.
In our study, network embeddedness of organisation u – and in a second step of

region i (see below) – is captured by two distinct centrality measures, namely

betweenness and eigenvector centrality.2 The betweenness concept captures the

centrality of a node in terms of its position for controlling the flow of information

within the network (Freeman 1979). Thus, central organisations benefit from

gaining access to various knowledge sources, and, at the same time, take up –

independent of their degree – a significant position in influencing the transfer of

knowledge within the whole network. In other words, they act as ‘gatekeepers’ by

exerting control over the knowledge flowing through them. Mathematically,

betweenness centrality gut of organisation u for a given year t measures how

often organisation u is situated between other not directly interlinked organisations
in time period t, as defined by

gut ¼
Xm

v<q
v¼1

dvqt uð Þ=dvqt ð15:2Þ

where dvqt(u) is the shortest path3 between organisations v and q going through

organisation u at time t, for u 6¼ v 6¼ q.

2 Further centrality measures commonly used in SNA are degree and closeness centrality. Degree

centrality focuses on connections directly attached to a vertex; closeness centrality indicates how

close a distinct vertex is to all other vertices in the network (Faust 1997).
3 A path is the alternating sequence of vertices and links, beginning and ending with a vertex, so

that the shortest path or geodesic distance duvt between two organisations u and v in time period t. is
defined as the number of vertices to be passed in the shortest possible path from one vertex to

another (see Wasserman and Faust 1994 for further details).
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We additionally investigate the eigenvector centrality by examining all organi-

sations in parallel and assigning centrality weights that correspond to the average

degree of all linked organisations (Bonacich 1987). The concept lays emphasis on

the importance of direct linkages of a vertex in the network, but additionally takes

the degree of all other connected vertices into account. Eigenvector centrality rut of
organisation u at time t is defined to be proportional to the sum of degrees of

organisations to which it is connected4:

rut ¼ 1

λ

Xm
v¼1

auvtkvt ð15:3Þ

where λ is the largest eigenvalue of At.
5

Since we are interested in a region’s centrality in the European networks of R&D

collaboration, and how different regional characteristics affect this centrality, we

aggregate our organisational centralities to the regional level. For this reason,

we sum up all normalised centralities of organisations that are located in region

i ¼ 1, . . ., n, so that the region-specific centrality is to be derived by

yit
bð Þ ¼

Xm
u¼1

giut ð15:4Þ

yit
eið Þ ¼

Xm
u¼1

riut ð15:5Þ

where yit
(b) and yit

(ei) is the betweenness and eigenvector centrality of region i at
time t, respectively. By this, we are presenting an innovative approach, using SNA

measures to characterise regional embeddedness in networks, but taking the net-

work structure at the organisational level as starting point.

15.4 Modelling Regional Network Embeddedness

We seek to measure how different region-internal and region-external characteris-

tics affect a region’s embeddedness in thematic FP networks in Europe as measured

by betweenness centrality yit
(b) or eigenvector centrality yit

(ei) defined by Eqs. 15.4

4 For practical purposes, we draw on the adjacency matrix At defined by Eq. 15.1 instead of the

bipartite graph in our formal description.
5 A common notation used in this context is the eigenvector equation as given by λ x ¼ A x, where

x is a vector of centralities x ¼ (x1, x2, ....) denoting the eigenvector of the adjacency matrix

A with eigenvalue λ (Bonacich 1987).
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and 15.5, respectively.6 Note that we calculate these centralities separately for each

thematic priority but refrain from introducing an additional sector index for pur-

poses of readability. Thus, for each thematic network, the situation we are consid-

ering is one of observations yit (i, j ¼ 1, . . ., n ¼ 241; t ¼ 1, . . ., T ¼ 9) on

stochastic variables, say Yit, corresponding to the centrality in the FP network of

region i at time t. We assume – based on our theoretical consideration in Sect. 15.2 –

an outcome of yit to be determined by the 1-by-Q row vector (q ¼ 1, . . ., Q) of
variables c accounting for the knowledge production capacity of a region, and by

the 1-by-S row vector (s ¼ 1, . . ., S) of variables z accounting for the regional
economic conditions and agglomeration effects. We specify a space-time model

that fits our dataset as follows:

yit ¼ αþ citβ
cð Þ þ

Xn
j¼1

wijcjtγ
cð Þ þ zitβ

zð Þ

þ
Xn
j¼1

wijzjtγ
zð Þ þ

XT
t¼1

btτt þ μi þ uit

ð15:6Þ

with

uit ¼ ρ
Xn
j¼1

wijuit þ εit ð15:7Þ

where α is a scalar parameter, β(c) (Q-by-1) and β(z) (S-by-1) are associated

parameter vectors estimating the influence of the regional knowledge production

capacity cit, and effects of the regional economic condition and agglomeration zit
for region i at time t. The parameter vector γ(c) (Q-by-1) and γ(z) (S-by-1) reflect
spatially weighted exogenous interaction effects that are directly interpretable as

local multipliers (Le Sage and Pace 2009). wij is an element of the non-stochastic,

time-invariant n-by-n spatial weights matrix W describing the spatial arrangement

of our set of n regions.7 bt is the n-by-1 vector controlling for time-specific

idiosyncrasies, and τt being the associated scalar parameter, while μi denotes the
region-specific effect accounting for omitted space-specific but time-invariant

6A descriptive analysis of our centrality measures as used in the spatial modelling approach are

given in the Appendix.
7We define wij ¼ 1 if i and j are spatial neighbours in the form that they are sharing a common

border, and zero otherwise, with wii ¼ 0. We use a row standardized version of W allowing

interpretation of the spatial lags of the independent variables being the weighted average impact on

region i by their neighbouring regions. For the SDEM, interpretation of both direct and indirect

effects is directly associated with the parameter estimates as opposed to specifications that contain

spatial lags of the dependent variable, such as the SDM (Le Sage and Pace 2009).
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variables, following a random effects specification; ρ is the spatial autocorrelation

coefficient and εit is the IID error term. Equation 15.6 with error specification

Eq. 15.7 is referred to as the panel version of the SDEM that controls for a bias

due to omitted spatially autocorrelated independent variables while at the same

time allows to estimate spatial spillovers (see Le Sage and Pace 2009 for further

details on properties of the SDEM). We use Maximum Likelihood estimation

procedures to estimate the parameters (see Elhorst 2003 for details; Baltagi 2008).

In modelling a region’s network embeddedness we consider two different types

of independent variables. The following q ¼ 1, . . ., Q ¼ 4 variables c account for
regional knowledge production capacity:

i. c
ð1Þ
it captures total regional R&D expenditures (log of public and private R&D

expenditures in % of GRP), used as a proxy for the level of financial knowledge

production inputs.

ii. c
ð2Þ
it is the logarithmic share of population with tertiary education

(corresponding to levels 5 and 6 of the ISCED 1997 classification system),

measuring a region’s endowment with human capital.

iii. c
ð3Þ
it is the region’s R&D activities in high-tech sectors measured by the number

of high-tech patents per million employees and used in logarithmic form.

iv. c
ð4Þ
it captures the degree of technological specialisation within region i, using an
index of specialisation of a region’s patent portfolio.8

Then we include s ¼ 1, . . ., S ¼ 3 variables z accounting for the regional
economic conditions and agglomeration effects.

v. z
ð1Þ
it is the degree of industrial diversity within region i measured in terms of an

industrial diversity index.9

vi. z
ð2Þ
it is the logarithmic form of the gross regional product (GRP) per capita,

proxying the general socio-economic potential and development of a region.

vii. z
ð3Þ
it denotes the region’s population density as measured by the number of

inhabitants per square kilometre, used as proxy variable for the degree of

urbanisation, and in this context, for agglomeration effects.

8 The index is defined by c
4ð Þ
it ¼ 1

2

X
P
sip � s p

���� where sip is the region’s i share of patents in a

specific IPC class p and s p is the mean of IPC class p. Patents were taken into account at a three-

digit level corresponding to the International Patent Classification (IPC).
9We include five different main economic sectors, namely agriculture, manufacturing, construc-

tion, private services and non-market service sector. The index of specialisation to account for

industrial diversity is defined as z
1ð Þ
it ¼ 1

2

X
P
oip � o p

���� where oip is the region’s i share of gross

value added in a specific sector p (indexed p ¼ 1, . . .., 5) and o p is the mean of sector p for

n ¼ 241 regions.
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Data for most independent variables have been drawn from the Eurostat regional

database, while information on patents was taken from the European Patent Office

(EPO) database. Our sample comprises full data for 241 European NUTS-2 regions

over the period 1998–2006.

15.5 Estimation Results

This section discusses the Maximum Likelihood (ML) estimates for our network

embeddedness models as specified by Eqs. 15.6 and 15.7 in terms of betweenness

centrality (BC) and eigenvector centrality (EC), estimated separately for each

thematic priority under consideration. Table 15.1 provides details on the estimation

results of the SDEM. Asymptotic standard errors are given in brackets, and time

controls as well as various model diagnostics and goodness-of-fit measures are

given at the bottom.

The results throughout all thematic areas show that endowment with knowledge
production capacities is a crucial explanation factor for a region’s centrality in the

European network of R&D collaboration. Thus, we can confirm our hypothesis i).
Interestingly, the findings provide evidence that different aspects are decisive in

distinct thematic areas: We observe significantly positive estimates for our R&D

expenditures variable (βðcÞ1 ) in all thematic fields, indicating that the higher the

financial resources devoted to R&D, the higher is the ability of a region and its

domestic organisations to reach centrality in R&D networks. However, parameter

estimates for our human capital variable (βðcÞ2 ) are more diversified for the different

model specifications. We find that a highly educated pool of labour is essential for

eigenvector centrality in all thematic areas, and particularly in LS. In terms of

betweenness centrality, a positive influence of human capital can only be confirmed

for the LS but not for ICT and SD FP networks.

Moreover, quality of a region’s technological knowledge base measured in terms

of high-tech patents (βðcÞ3 ) enhances betweenness and eigenvector centrality in all

thematic networks, except eigenvector centrality in the LS FP network. It seems

that distinct motives and types of R&D collaborations in a specific thematic field

(science-driven and university-led research activities in LS vs. more industry-based

and application-oriented R&D collaborations in ICT and SD) could explain the

variation in our results for knowledge production specific factors, which become

even more obvious in our betweenness and eigenvector centrality model

specifications.
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Regarding the effects of a region’s technological specialisation (βðcÞ4 ), we do not

find a consistent pattern in our different model versions that might broadly explain

network embeddedness in different FP networks. The results show that technolog-

ical specialisation negatively influences a region’s network embeddedness in terms

of betweenness centrality only in ICT, while it has no statistically significant effect

in the other two thematic areas. In terms of eigenvector centrality, we observe that

technological specialisation even impedes a region’s strategic network position in

the LS network, but fosters embeddedness in the SD network. Against our general

assumption of positive technological specialisation effects (hypothesis i), we can-

not identify a homogenous pattern across the thematic fields under consideration.

In addition, we account for economic conditions and regional agglomeration
effects in modelling a region’s network embeddedness. In this regard, we found

evidence that industrial diversity (βðzÞ1 ) in a distinct region fosters betweenness

centrality in all thematic networks; for eigenvector centrality such a positive effect

is observed only in the LS network. Concerning the influence of a region’s general

socio-economic potential measured in terms of its GRP per capita (βðzÞ2 ), we observe

the highest positive effects for all model specifications, indicating that the stage of

socio-economic development of a region is one of the most crucial regional factors

that fosters a central position of the respective region in the European network of

R&D collaboration. These findings confirm our hypothesis (ii). However, we

further found that urbanisation per se is not a sufficient driving force for R&D

network embeddedness of a region; the estimate βðzÞ3 for population density is

significant for betweenness centrality in the SD network, but exerts only a marginal

negative influence.

Furthermore, we assume that spatial spillovers from neighbouring regions
influence a region’s network embeddedness (hypothesis iii). This is confirmed as

the results show that high knowledge production capacities of neighbouring regions

(as indicated by the estimates for γðcÞ1 and γðcÞ2 ) considerably decrease a region’s own

network embeddedness. This might be explained by the fact that financial or human

R&D resources are not freely available within regions, but first, limited in avail-

ability, and second, rather mobile as far as spatially proximate regions are

concerned. Thus, a drain of crucial knowledge production inputs to more

research-intensive and productive regions is conceivable, especially due to cen-

tre-periphery structures and agglomeration tendencies across adjacent regions. In

contrast, we can observe positive indirect effects induced by the general socio-

economic potential of neighbouring regions, reflected in the spatially lagged

parameter estimates for GRP per capita (γðzÞ2 ). The effects are particularly strong

in the SD network for both centrality specifications, while the stage of socio-

economic development of adjacent regions seems to have no influence on

embeddedness in the ICT network. Furthermore, the results show that the industrial
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structure in adjacent regions has adverse effects compared to their region-internal

counterparts; a high degree of industrial diversity in adjacent regions (γðzÞ1 ) nega-

tively affects a region’s embeddedness in all three thematic R&D networks.

15.6 Concluding Remarks

R&D collaborations have attracted a great deal of attention in the scientific litera-

ture of economics and geography of innovation. In spatial terms, they constitute

valuable means allowing organisations direct access to knowledge that is widely

dispersed in geographic space. Thus, they have often been analysed from a dyadic

or micro-level perspective. Only recently, the network perspective has gained

importance in the analysis of R&D collaborations, highlighting the possibility to

tap knowledge that diffuses through the entire network via indirect allies. From this

view, it is assumed that actors are embedded in a web of direct and indirect ties

where knowledge is transmitted. Thus, strategic positioning in such R&D networks

is of central importance to reap full benefits of the entire network structure.

This study focused on the embeddedness of European regions in the network of

R&D collaborations constituted under the heading of the EU Framework

Programmes (FPs). We analysed R&D networks for three distinct thematic FP

programmes from a regional perspective. The aim was to identify regional factors

that impact a region’s network position, i.e. its centrality in the European R&D

collaboration network. We took a Social Network Analysis (SNA) perspective,

defining a region’s embeddedness as the aggregate of the centralities of each

organisation located in that region. We further differentiated between eigenvector

centrality, i.e. importance of an organisation in terms of connectedness to central

hubs in the network, and betweenness centrality, i.e. an organisation’s ability to

access and control a diverse set of knowledge flows in the network. A panel version

of the spatial Durbin error model was estimated to relate regional network

embeddedness to a set of independent variables encompassing the knowledge

production capacity and the general economic structure of a region as well as

spatial spillovers of neighbouring regions.

We explicitly account for individual network structures and characteristics of the

thematic FP programmes by estimating individual model versions for ICT, Life

Sciences and Sustainable Development. The different model specifications point to

striking similarities across thematic programmes and centrality concepts. We have

identified a set of the most conducive region-internal and region-external factors for

a region’s embeddedness that spans across thematic networks of R&D collabora-

tion in Europe:
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First, high regional knowledge production capacities are crucial for reaching

high visibility in the thematic networks of R&D collaborations across Europe.

Knowledge-intensive regions holding high amounts of financial R&D inputs and

human capital more likely participate in R&D collaborations, and thus, more likely

become a core player in the European R&D collaboration landscape. However,

knowledge production capacities of neighbouring regions decrease a region’s own

network centrality, possibly due to the presence of centre-periphery and agglom-

eration tendencies across nearby regions that are induced by limited financial and

human R&D recourses. Second, highly developed regions that encompass a diver-

sified industrial structure more likely gain an advantageous position in the Euro-

pean networks of R&D collaboration. In this regard, a region’s network

embeddedness is additionally driven by the economic strength of nearby regions,

while negative indirect effects are induced by industrial diversity in neighbouring

regions.

The question of how to gain an advantageous position in the European network

of R&D collaboration may be of particular relevance for regional innovation

policy, particularly in light of the necessity to maintain or enhance innovativeness

of regions and their locally embedded actors. In this context, our study provides

general evidence that it is a mixture of specific R&D strengths and general

economic factors that is important for a central network embeddedness of regions.

Increasing regional R&D inputs such as financial investments and human capital is

therefore essential for less central regions to enhance visibility of their organisa-

tions in inter-regional R&D networks. Likewise, more ambitious framework con-

ditions for R&D might reduce a drain of highly educated people to neighbouring

regions, which otherwise would have negative consequences for a region’s R&D

network position. However, we do not find broad evidence in this study that

regional specialisation on just a few technological core fields has an influence on

the strategic positioning in long-distance R&D collaboration networks.
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Fig. 15.1 Network characteristics by thematic field

Table 15.2 Descriptive statistics on regional centrality by thematic field

Year Mean Median Std.dev. Skewness Kurtosis

Information and communication technologies (ICT)

Betweenness centrality 1998 0.008 0.000 0.024 6.112 49.728

2006 0.007 0.001 0.024 8.120 75.972

Eigenvector centrality 1998 0.084 0.014 0.235 7.825 83.440

2006 0.170 0.055 0.392 7.496 77.951

Life sciences (LS)

Betweenness centrality 1998 0.007 0.001 0.017 5.102 30.620

2006 0.006 0.001 0.018 6.759 58.872

Eigenvector centrality 1998 0.180 0.054 0.346 4.231 23.455

2006 0.153 0.051 0.329 5.899 48.336

Sustainable development (SD)

Betweenness centrality 1998 0.006 0.001 0.016 5.071 32.323

2006 0.007 0.001 0.018 4.871 31.990

Eigenvector centrality 1998 0.127 0.034 0.245 3.902 20.540

2006 0.298 0.102 0.559 5.212 39.997

Note: Regional centralities are considered as sum of organisations’ centralities; betweenness and

eigenvector centrality are normalised between zero and one at the organisational level
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Chapter 16

Local Buzz Versus Global Pipelines

and the Inventive Productivity of US Cities

Stefano Breschi and Camilla Lenzi

Abstract Drawing on recent research emphasizing the role played by social and

collaboration networks in driving the spatial diffusion of scientific and technolog-

ical knowledge, this chapter presents new evidence on the structural properties of

knowledge networks in 331 US cities based on European Patent Office data for the

period 1990–2004. Interestingly, and differently from previous studies, the chapter

not only looks at cities’ internal network topological structure, but also at the

embeddedness of metropolitan inventors within the broader US-wide collaboration

network. To this end, it proposes new indicators aimed to capture US cities’

propensity to engage not only in local, but also in global knowledge exchanges.

In particular, the chapter proposes a classification of US cities according to these

dimensions and examines the evolution of metropolitan co-invention networks

structural properties in a diachronic perspective. These trends are finally associated

to cities’ inventive and economic performance.

16.1 Introduction

The importance of knowledge spillovers and exchanges for innovative and eco-

nomic performance can be hardly neglected and has been supported in the literature

by mounting theoretical and empirical research at different levels of analysis since

the early formulation of the well-known Marshallian externalities (Audretsch 1998;

Sorenson 2003; Beaudry and Schiffauerova 2009). More recently, research has

specifically focused on the mechanisms driving the diffusion of knowledge
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and notably knowledge networks. In particular, a relatively broad consensus has

emerged in the literature about the importance of social proximity within well-

defined knowledge communities vis à vis pure geographical co-location to explain

knowledge flows and their spatial reach (Singh 2005; Breschi and Lissoni 2009).

Although the literature in economic geography and urban economics has largely

emphasized the benefits arising from local networking, recent research has started

to question that closeness among actors is beneficial per se while it may also show

negative consequences (Burt 2001, 2004; Uzzi 1997). For example, Boschma and

Frenken (2010) claim that knowledge exchanges and repeated interactions among

the same set of co-localized actors become less valuable over time as knowledge

becomes redundant and opportunities for recombination of different but comple-

mentary pieces of knowledge are exhausted. Similarly, Fratesi and Senn (2009,

p. 17) argue that an excess of inward exchanges that are not complemented by

external ones may bring ‘the risk of localism, which implies that a regional

economy is unable to acquire and master external knowledge and is hence likely

to be less innovative’. A disproportionate inward orientation may reduce the

potential for knowledge exploration and recombination thus leading to decreases

in creativity and losses of positions in the spatial ranking (Neal 2011). Localism

may crystallize the existing knowledge basis by reducing heterogeneity and by

neglecting alternative technological approaches and solutions, thus inevitably

increasing the risks of lock-in. Therefore, the ‘local buzz’ effect, associated to the

rapid diffusion and recombination of ideas and knowledge in clusters and urban

settings, may decline and fail to sustain high levels of inventive performance

(Bathelt et al. 2004; Storper and Venables 2004).

On the other hand, external linkages with distant regions and cities may provide

some shelter to this ‘trap’. External sources of new and non redundant knowledge,

i.e. ‘global pipelines’, may inject into the local network new information about

market opportunities and still unmet demand (Bresnahan et al. 2001), specialized

skills and human capital (Gittelman 2007) and may give access to a larger repertoire

of technological and organizational solutions (Owen-Smith and Powell 2004). The

role of external links has been also highlighted in the literature on industrial

districts, pointing to the key role of leading firms in clusters for the access to

external knowledge and, possibly, its transfer to other firms nearby located

(Giuliani and Bell 2005; Morrison 2008). Overall, embeddedness in broad knowl-

edge networks, beyond local boundaries, may provide considerable resources and

information advantages locally not available and may mitigate the risks of ‘entropic

death’ and lock-in to an obsolete set of technologies.

Still, whereas an excessive inward orientation may reduce the creative drive, an

excessive external exposure may lead to technological dependence and exhaustion

of endogenous capabilities of autonomous innovation (Evangelista et al. 2002). In

fact, a certain level of local knowledge base and absorptive capacity is needed to

trans-code, absorb and diffuse the externally sourced knowledge. Hence, a balanced

mix of internal and external sources of knowledge (i.e. local buzz and global

pipelines) seems to be necessary to promote knowledge diffusion and creation at

the local level. In other words, internal and external sources of knowledge are
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complementary and mutually reinforcing rather than substituting each other

(Bathelt et al. 2004; Graf 2011).

On this ground, the present chapter explores the relevance of local buzz and

global pipelines and their link to inventive and economic performance by

presenting new evidence about co-invention networks of 331 US cities based on

European Patent Office (EPO) data for the period 1990–2004. The focus on urban

settings particularly suits the study of the link between co-invention network

structure and new knowledge creation, as creativity and invention in the US have

ever been and still are a predominantly metropolitan phenomenon (Carlino

et al. 2007; Feller 1971, 1973; Lamoreaux and Sokoloff 2000; Pred 1966, 1973).

To this end, the remainder of the chapter is organized as follows. The next

section explains how network indicators can be successfully used to capture the

intensity of local buzz and global pipelines in a city and proposes a taxonomy of US

cities according to their propensity to engage in local or global relationships or

both. Section 16.3 presents the data set used to draw the co-invention network and

to develop the proposed indicators. Section 16.4 comments on how co-invention

structural properties link to a city inventive and economic performances. Lastly,

Sect. 16.5 concludes by summarizing the main results and by advancing some

suggestions for future research.

16.2 The Data Set and the Co-Invention Network’s

Construction

The use of patent data as relational data enables to map and to study the socio-

professional networks in which inventors are embedded through the tools of social

network analysis and graph theory (Breschi and Lissoni 2004; Singh 2005; Ter Wal

and Boschma 2009). In such a framework, the nodes of the network are inventors

and the edges of the network link co-inventors listed on the same patent document.

In other words, a pair of inventors is connected if they are designated as inventors in

one or more patent documents. Whereas co-invention links certainly capture a

subset of all relevant knowledge exchanges and links among individuals within

and across cities, these are neither unintentional nor unchecked. The network of

inventors is in fact the most immediate and influential social environment from

which ideas and information can be drawn, at least for the technical contents of their

patents (see Breschi and Lissoni (2004) for additional details on this issue).

Despite the limitations of patent data widely discussed in the literature, patent

data present, especially for spatial analyses, two specific advantages as they provide

information on the address of each individual inventor who contributed to produce

the invention and the list of individual inventors that have produced it. From the

latter, the whole set of co-invention ties linking individuals can be derived. On the

basis of inventors’ addresses, it is then possible to distinguish between
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(co-invention) ties linking inventors located in the same city, and co-invention ties

linking individuals located in different cities.1

To build the co-invention network within and across US cities, all patent

applications made by US organizations at the European Patent Office (EPO) in

1990–2004 were extracted using the CRIOS-PATSTAT database.2 Next, the names

and addresses of the inventors listed on each patent were collected and harmonized

so to minimize spelling errors. The correct identification of individual inventors

(i.e., nodes) is crucial to ensure the validity of results derived from social network

analysis techniques and requires cleaning and standardization procedures to code

names and addresses. To this purpose, we have implemented the Massacrator

routine. This is a SQL-based algorithm that compares all inventors with the same

name and surname, but different addresses, in pairs. The routine compares infor-

mation on each inventor in the pair, namely biographical information, the techno-

logical contents (i.e. the IPC code) and applicant of each inventor’s patents, citation

relationships and co-invention ties between the inventors. The routine computes a

cumulative ‘similarity score’ for each pair of inventors with the same name and

surname, but different address, according to the similarities in the criteria listed

above. The greater the similarity in the information set, the greater the score and the

greater the probability that the two inventors are actually the same person. The

threshold value of the score for accepting identity between two individuals has been

set to a relatively high value to ensure a rather conservative approach in coupling

individuals. In other words, the routine has been tuned in a way to minimize false

positives (i.e. the probability to identify two inventors as the same person, when

they are not, is minimized), although this comes with the cost of having some false

negatives (i.e. the data set can still include some cases in which the same person is

listed as two different inventors). Lissoni et al. (2006) provide fuller details on the

Massacrator routine.

The reported addresses were used to assign each US inventor to one of the

370 US Metropolitan Statistical Areas (MSAs), using the definition files available

on the U.S. Census Bureau website.3 The US Office of Management and Budget

defines MSAs as urban core areas of at least 50,000 people, plus adjacent counties

that have a high degree of social and economic integration with the core, as

measured by commuting ties. The MSAs of Hawaii, Puerto Rico, and Alaska,

1 Our definition of internal (i.e. within cities) vs. external (across cities) ties is based on inventors’

address as available from patent data, regardless they work in the same area or not.
2 The reference year is the priority year, i.e., the first date at which the patent was applied for

anywhere in the world, as it is the closest to the actual time of the invention.
3MSAs are defined according to the June 2003 definition of MSAs (http://www.census.gov/

population/www/metroareas/metrodef.html). In absence of information on the MSA, information

on the state and the zip code were used to assign an inventor to the corresponding MSA using

ZIPList5, a commercial database listing every active ZIP code currently defined by the U.S. Postal

Service (http://www.zipinfo.com/products/z5cbsa/z5cbsa.htm). For each ZIP code the database

identifies the MSA in which the ZIP code lies.
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along with 30 other MSAs were excluded from this analysis as there were no

patents filed in the MSA in the sample period or because the data used to control

for other economic characteristics of the city were missing or incomplete. The final

data set includes information on 331 MSAs, 378,167 patents, and 418,228 inventors

which amount to, respectively, 96.7 % of all EPO patent applications made by US

organizations, and 94.5 % of all US inventors, in 1990–2004.

One of the main criticisms to the use of patent data relates to their uneven

quality. In this case, by using patent applications of US organizations at EPO,

patents of low quality or with low commercial value, which are not worth extending

to Europe (through a costly procedure such as the EPO one), are dropped from the

analysis thus mitigating this risk. Several scholars have argued that, precisely in the

period under consideration, the average quality of patents issued by the USPTO has

declined due to a series of factors, such as the expansion of patentable subject

matters and the increasing use of patents for strategic purposes, which have

generated a dramatic surge in the number of patent applications and an increased

patent office backlogs. As a consequence of these trends, patents of insufficient

quality or with inadequate search of prior-art have been increasingly issued (Hall

et al. 2004; Jaffe and Lerner 2004).

Consistently with existing studies in the management and economic geography

literature (Fleming et al. 2007; Lobo and Strumsky 2008), the co-invention network

is considered as a binary network despite, from a technical point of view, it is the

one-mode projection of an affiliation (or two-mode) network and as such, it is a

valued network, where the line value indicates the number of patents (i.e. the

events) in which two inventors have been part of the same team.

Finally, to account for the possibility of ties’ decay, the co-invention network at

time t includes only the co-invention ties that have been formed between (t-1) and

(t-5); each year it is updated by dropping older than 5-year ties and adding up new

ones. In fact, the effectiveness with which a co-invention tie transmits knowledge

between inventors is likely to decay with the age of the link, especially for

co-invention tie established long ago and never renewed. This time window is

consistent with other studies (Fleming et al. 2007; Schilling and Phelps 2007; Lobo

and Strumsky 2008) and adopting different time windows did not substantively

change the results.

16.3 The Measurement of Local Buzz and Global Pipelines

Through Network Indicators and a Classification

of US Cities

The measurement of structural properties of co-invention networks within cities

and regions (i.e. the intensity of the local buzz) has mostly relied upon indicators

aimed at capturing the pervasiveness of knowledge exchanges and scientific

16 Local Buzz Versus Global Pipelines and the Inventive Productivity of US Cities 303



collaborations of local actors.4 In fact, in networks where members are closely

connected knowledge and information tend to diffuse more rapidly, and with less

noise, than in networks where members are connected by longer chains of ties. As a

consequence, new information or ideas generated within the network may rapidly

reach (or spill over to) all other members of the network and be recombined with

their own knowledge. Accordingly, indicators like the density of the urban/regional

network, the average distance and the share of actors belonging to the largest

component5 have been extensively used to account for the connectivity of local

networks (see among the many others Fleming et al. 2007 and Lobo and Strumsky

2008).

However, such measures look problematic in the case of sparse and fragmented

networks as co-invention networks, where density is low and actors are distributed

in small unconnected components. Also, these indicators are dimensionless

whereas the amount of knowledge circulating in a city is likely to depend not

only on how proximate are the actors in a network but also on how many other

nodes in the network a given node is able to connect (either directly or indirectly).

In other words, knowledge flows depend both on the size of the network and its

connectivity. In fact, given two networks with the same average distance among

nodes, the amount of knowledge flowing within a city will be higher, the larger the

number of nodes in the network.

Interestingly, the distance-weighted internal reach indicator proposed by

Borgatti (2006) enables to take into account both dimensions. Formally, for any

individual, this is defined as the sum of the reciprocal distances to all other

inventors k s/he can reach in the co-invention network within the city, as

summarised in Eq. 16.1 below:

dwrj ¼
X n

k ¼ 1

j 6¼ k

1

djk
ð16:1Þ

where djk is the geodesic distance (i.e., the shortest path) that separates inventor

j from inventor k in the co-invention network internal to a city.6 Taking the overall

city network, the average distance-weighted internal reach is this measure aver-

aged across all nodes (i.e. inventors) in the network:

4As in Fleming et al. (2007) and Lobo and Strumsky (2008), the metropolitan (also termed as

internal or local) co-invention network is composed of the subset of nodes located in a given city

and the ties among them; its structural properties therefore determines a city’s network structure.

Differently, the external network is composed of the links connecting nodes residing in different

cities.
5 This is the largest group of connected nodes in a network; more formally, it is the largest

sub-graph that contains the largest number of nodes.
6 The reciprocal of an infinite distance, i.e., when two inventors in the network are not reachable, is
set at 0.
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Internal reachMSAi
¼

Xn

j¼1

X n
k ¼ 1

j 6¼ k

1

djk

ni
ð16:2Þ

This index varies between 0 and ni; it is equal to 0 when every inventor in a city

is an isolate, i.e., when s/he does not collaborate with any other inventor in the city

and it takes a value equal to ni when every inventor is directly connected to every

other inventor without intermediaries (s/he directly collaborates with every other

inventor in the city).

This index suits very well the case of sparse and fragmented networks as

co-invention networks. First, it allows considering all inventors in a city whereas

indicators like the size of the largest component or the average distance focus on

one component only that may capture only a low fraction of all inventors (the

average share of inventors in the largest component in the period 1990–2004 is only

17.5 %).

Second, it not only provides information on how well connected are actors

within a city and therefore on how smoothly knowledge flows but also on the

scale of such effects. In fact, it is normalized by ni and, therefore, it captures a

network’s size and connectivity simultaneously, as both aspects matter in

explaining the local buzz effect. In cities where internal reach is high, connectivity
is high (i.e., inventors are closer and less fragmented into multiple disconnected

components), and the number of inventors is larger. Knowledge, therefore, is likely

to flow faster, with less noise and to benefit a larger number of individuals.

Third, it considers both first-order ties (i.e., inventors directly connected because

of joint patents) but also second-order and higher-order co-invention links, and thus

the overall scope of a city’s ties. The intensity of the local buzz effect does not

depend only on the number of direct ties but also on the number of indirect ties,

though the value and impact of the knowledge received may be subject to distance

decay effects between sender and receiver (Ahuja 2000).

The measurement of structural properties of co-invention networks among cities

and regions (i.e. the intensity of global pipelines) has mostly relied upon indicators

aimed at capturing the degree of openness of local networks, for example through

the number of external co-inventors to the city (Fleming et al. 2007; Lobo and

Strumsky 2008) or centrality indexes (Giuliani and Bell 2005). However, for the

reasons discussed above, such indexes may be quite unsatisfactory in the case of

sparse and fragmented networks. Therefore, an adapted version of the distance-

weighted reach indicator proposed by Borgatti (2006) is used to capture the extent

to which a city’s inventors forge external ties with all other inventors located in all

other cities. Formally, this index is defined as follows:

External reachMSAi
¼
Xni

i¼1

Xnh

h¼1

1
dih

ni
ð16:3Þ

16 Local Buzz Versus Global Pipelines and the Inventive Productivity of US Cities 305



where ni denotes the number of inventors located in city i and nh denotes the number

of inventors located in other cities (i.e., not located in city i), and dih denotes as

before the geodesic distance (i.e., shortest path) in the global co-invention network

between inventor i and inventor h. The index takes a minimum value of zero (i.e.,

all inventors in city i are not connected to any external inventor). In the (theoretical)
case in which every inventor in city i directly collaborates to every other inventor in
every other city, the index takes value (nh). Similarly to internal reach, higher

values of the external reach index imply that a city has faster access to a larger pool

of external knowledge and resources.

On the basis of these indicators, it is possible to classify US cities in terms of

their intensity of internal and external links, i.e. the intensity of the local buzz and

global pipelines effects. A simple and somewhat sketchy taxonomy can help to

specify the different propensity across cities towards inward and outward connec-

tions and modes of integrating them. In particular, cities can be classified according

to their positioning in terms of internal reach and external reach with respect to the

US median value, as displayed in Fig. 16.1.7

Cities can show higher values of both indicators with respect to the US median;

accordingly, these cities can be named as networking. Moreover, there may be

cities that are predominantly inward oriented (i.e. internal reach is greater than the

US median but external reach is lower than the US median); they may be termed as

local cities. By contrast, there may be cities that are predominantly outward

oriented (i.e. external reach is greater that the US median but internal reach is

US median value

Local cities (3)

Networking cities (4)

Local buzz intensity

Global pipeline intensity

Global cities (2)

Isolated cities (1)

Fig. 16.1 A proposed classification of US cities

7 The choice of the median value for the creation of the classification is preferable to the use of

average values as both internal and external reach show a very skewed distribution as summary

statistics in Table 16.1 show.
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lower than the US median); these cities can be therefore labeled as global cities.

Lastly, there may be cities with a very limited networking attitude as both internal

and external reach show values below the US median. These cities can be therefore

defined as isolated cities.

This simple classification can provide a useful framework in which to read the

heterogeneity across cities in their propensity to forge internal and external links

and how this links to inventive and economic performance, i.e. what is the relative

importance of local buzz and global pipelines for innovation and competitiveness.

16.4 The Relevance of Local Buzz and Global Pipelines

for US Cities Inventive and Economic Performance

The wide temporal coverage of the present data set interestingly enables to monitor

the evolution over time of the two central variables, internal reach and external

reach. Table 16.1 reports their average values for three non-overlapping sub-pe-

riods of equal length of the 1990–2004 time span.

Besides the large spatial heterogeneity of the two indicators, attested by the large

variance and difference between minimum and maximum values, it is interesting to

notice the sharp increase of both variables in the 15 years under observation. This is

certainly consistent with the well documented patent explosion during the 1990s

and especially in the US. Importantly, the average value of internal reach more than

doubled whereas the external reach indicator grew more than 30 times.8

This increasing trend in the number of external relationships is also visible in

Fig. 16.2 that plots the average ratio of external to internal ties for the 331 cities

analyzed in the period 1990–2004. External ties are those linking an inventor in city

i to an inventor located in city j. Internal ties, instead, link two inventors located in

the same city. This ratio rose steadily from around 2.5 to around 4.3: links across

cities have been increasing much faster than links within cities. The outward-

looking propensity of agents within cities have spurred the search for knowledge

outside the boundaries of the area in which they were located. However, this

process was quite spatially unbalanced as confirmed by the coefficient of variation

with value greater than one: cities were quite heterogeneous in their ability to forge

external ties.

By applying the classification proposed in Sect. 16.3, US cities can be grouped

on the basis of their propensity to engage into local and external relationships

(i.e. local buzz vs. global pipelines) and can be divided accordingly in four clusters.

To this end, we computed for each city the average value of the internal reach and

external reach indicators in the three sub-periods 1990–1994, 1995–1999, and

8Because both internal and external reach are scale variant, we cannot exclude that this result can

be influenced by an increase of the external network greater than the increase of the average

internal network.
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2000–2004. About 30 % of US cities fall in the isolated group. Perhaps these cities

show a limited inventive activity that hinder opportunities for collaboration both at

the local and global levels. The two groups of local cities on the one hand and of

global cities on the other have comparable size (almost 20 % of US cities each),

attesting that a non negligible number of cities either exploit only local knowledge

exchanges or, alternatively, rely on external knowledge sources. Lastly, networking

cities are also quite a large group (30 %), suggesting that internal and external ties

could be complementary and mutually reinforcing rather than substitute each other

(Table 16.2).

Interestingly enough, the relative size of the four groups tends to be rather

persistent in the three sub-periods, although there is some churning and erraticism

in cities’ classification as several of them change category over time as reported in

the transition matrixes below (Tables 16.3, 16.4, and 16.5).

Importantly, Table 16.6 reports the average values of the internal reach and

external reach indicators and the significance level of the ANOVA test for the four

groups of cities in the three sub-periods 1990–1994, 1995–1999 and 2000–2004.

1

2

3

4

5

External ties / Internal ties

1990 199 1992 1993 1994 1995 1996 1997 1998 1999 200 2001 2002 2003 200

Year

Mean Coefficient of variation

Fig. 16.2 Average ratio of external to internal ties 1990–2004, (331 MSAs) Source: Breschi and

Lenzi 2011

Table 16.1 Summary statistics for internal reach and external reach, 1990–2004

Internal reach External reach

1990–1994 1995–1999 2000–2004 1990–1994 1995–1999 2000–2004

Mean 2.335 3.803 5.409 15.227 125.114 512.4285

Standard deviation 4.646 11.222 15.989 26.718 138.674 476.918

Median 1.298 1.536 1.818 6.386 80.536 383.314

Minimum 0 0 0 0 0.253 0.452

Maximum 61.809 122.848 173.369 202.432 919.602 2,726.617

Observations 331 331 331 331 331 331
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The highly significant differences in the average values of both indexes across the

four groups indicate that the proposed classification of US cities does capture quite

heterogeneous behaviours in metropolitan networking intensity and attitudes as

well as, possibly, in cities’ inventive activities.

Table 16.2 Number of cities by group, 1990–2004

1990–1994 1995–1999 2000–2004

Isolated cities (1) 104 105 101

Global cities (2) 62 60 64

Local cities (3) 62 61 64

Networking cities (4) 103 105 102

Table 16.3 Transition matrix, 1990–1999

1995–1999

Isolated

cities (1)

Global

cities (2)

Local

cities (3)

Networking

cities (4) Total

1990–1994 Isolated cities (1) 66 23 12 3 104

Global cities (2) 20 29 1 12 62

Local cities (3) 15 3 31 13 62

Networking cities (4) 4 5 17 77 103

Total 105 60 61 105 331

Table 16.4 Transition matrix, 1995–2004

2000–2004

Isolated

cities (1)

Global

cities (2)

Local

cities (3)

Networking

cities (4) Total

1995–1999 Isolated cities (1) 73 19 10 3 105

Global cities (2) 12 38 3 7 60

Local cities (3) 10 2 38 11 61

Networking cities (4) 6 5 13 81 105

Total 101 64 64 102 331

Table 16.5 Transition matrix, 1990–2004

2000–2004

Isolated

cities (1)

Global

cities (2)

Local

cities (3)

Networking

cities (4) Total

1990–1994 Isolated cities (1) 62 24 15 3 104

Global cities (2) 17 29 4 12 62

Local cities (3) 15 5 26 16 62

Networking cities (4) 7 6 19 71 103

Total 101 64 64 102 331
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In order to explore this possibility, Tables 16.7, 16.8, and 16.9 investigate whether

the increasing outward-looking propensity of cities is associated to a larger inventive

performance in the three sub-periods 1990–1994, 1995–1999 and 2000–2004. In

particular, Tables 16.7, 16.8, and 16.9 report the average values in the four groups of

cities, in the US and the ANOVA significance test for different measures of inventive

output computed in the respective period under examination.

The first indicator considered is the total number of patents weighted by the

number of jobs.9 The second indicator is the number of internal patents (weighted

by the number of jobs) applied for only by inventors located in the focal MSA

(i.e. without inventors external to the city) and it provides a measure of a city’s

endogenous inventive capabilities. The third indicator is the number of mixed

patents (weighted by the number of jobs) that comprise at least two internal

inventors and one external inventor, i.e. they are the outcome of both within and

across cities collaboration. The fourth indicator is the number of external patents

(weighted by the number of jobs) that include only one internal inventor and at least

one external inventor, i.e. they are the outcome of cross-cities collaboration. To

account for the uneven quality and technological impact of patents, also the number

of patents weighted by the number of citations received in the first 5 years after

application (self-citations excluded) is considered. Originally, also two indicators

of technological recombination capabilities are considered. These are derived by

exploiting information on all technological classes listed in each patent document.

Firstly, for each city, we computed all pairs of technological classes associated

to each internal patent. From this, we counted the number of new pairs of techno-

logical classes in the city that are new to the US (i.e. radical creativity) and that are

new only to the city itself (i.e. incremental creativity). As both indicators tend to

increase with the number of patents developed, they have been both weighted by the

Table 16.6 Internal reach and external reach average values and ANOVA test statistical signif-

icance (p-value), by group of cities and periods

Internal reach External reach

1990–1994 1995–1999 2000–2004 1990–1994 1995–1999 2000–2004

Isolated cities (1) 0.476 0.683 0.815 1.776 24.404 170.689

Global cities (2) 0.67 0.677 0.739 19.214 195.388 712.993

Local cities (3) 2.778 3.169 3.513 2.699 38.1 178.064

Networking

cities (4)

4.947 9.079 14.077 33.952 236.218 934.771

ANOVA

significance

p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01

9 Source: US Bureau of Economic Analysis (BEA) Regional Economic Accounts (http://www.bea.

gov/regional/reis/).
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Table 16.7 Mean values by group of cities and in US and ANOVA test statistical significance

(p-value), 1990–1994

1990–1994

Isolated

cities (1)

Global

cities (2)

Local

cities (3)

Networking

cities (4)

US

average

ANOVA

significance

Total

patents

0.063 0.135 0.148 0.339 0.178 p < 0.01

Internal

patents

0.034 0.05 0.096 0.186 0.096 p < 0.01

Mixed

patents

0.003 0.011 0.015 0.041 0.018 p < 0.01

External

patents

0.020 0.056 0.029 0.085 0.049 p < 0.01

High quality

patents

0.015 0.032 0.086 0.169 0.079 p < 0.01

Radical

creativity

8.348 10.188 12.25 12.994 10.869 p < 0.10

Incremental

creativity

18.569 27.78 24.936 31.757 25.403 p < 0.05

Population

density

141.183 223.389 218.429 407.613 253.957 p < 0.01

PCPI 12,440.1 13,323.7 13,434.3 14,673.4 13,486.8 p < 0.01

Table 16.8 Mean values by group of cities and in US and ANOVA test statistical significance

(p-value), 1995–1999

1995–1999

Isolated

cities (1)

Global

cities (2)

Local

cities (3)

Networking

cities (4)

US

average

ANOVA

significance

Total

patents

0.094 0.168 0.191 0.447 0.237 p < 0.01

Internal

patents

0.042 0.056 0.109 0.221 0.113 p < 0.01

Mixed

patents

0.007 0.014 0.021 0.063 0.029 p < 0.01

External

patents

0.037 0.074 0.047 0.125 0.073 p < 0.01

High quality

patents

0.011 0.024 0.073 0.154 0.07 p < 0.01

Radical

creativity

5.886 8.121 6.885 8.957 7.449 p < 0.01

Incremental

creativity

16.748 25.337 18.803 26.758 21.859 p < 0.01

Population

density

166.744 184.44 254.1 424.985 267.97 p < 0.01

PCPI 13,433.3 13,621.4 14,653.7 15,768. 14,433. p < 0.01
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total number of patents in a city. Finally, an indicator of population density and

wealth (PCPI, i.e. deflated per capita personal income) are added.10

In terms of total patents, Tables 16.7, 16.8, and 16.9 indicate a ranking from

isolated cities up to networking cities. Local cities look somewhat more inventive

than global cities; however, their similar performance is driven by two opposite

networking mechanisms (i.e. internal vs. external patenting), consistently with the

proposed classification of cities. This is consistent with the view that an excessive

external exposure does not necessarily lead to higher innovative performances and

some local absorptive capacity (i.e. local buzz) is needed to effectively exploit

externally sourced knowledge. The figures on patents weighted by the number of

citations received confirm further this result, being local cities able to produce

consistently more valuable knowledge.

Interestingly, however, the two indicators of creativity and technological recom-

bination potentials indicate that external ties are associated to higher local creativity

(especially in incremental inventions), possibly by injecting non redundant knowl-

edge at the local level and by opening opportunities for technological exploration of

new fields.

Importantly, results suggest the existence of complementary effects in both

productivity and creativity. In fact, networking cities show superior performances

Table 16.9 Mean values by group of cities and in US and ANOVA test statistical significance

(p-value), 2000–2004

2000–2004

Isolated

cities (1)

Global

cities (2)

Local

cities (3)

Networking

cities (4)

US

average

ANOVA

significance

Total

patents

0.107 0.187 0.239 0.552 0.285 p < 0.01

Internal

patents

0.044 0.056 0.122 0.264 0.129 p < 0.01

Mixed

patents

0.009 0.015 0.031 0.086 0.038 p < 0.01

External

patents

0.043 0.091 0.067 0.154 0.091 p < 0.01

High quality

patents

0.004 0.006 0.016 0.049 0.021 p < 0.01

Radical

creativity

3.900 4.649 4.179 5.534 4.602 p < 0.01

Incremental

creativity

12.574 18.768 13.967 20.255 16.401 p < 0.01

Population

density

188.14 169.634 252.976 460.121 280.911 p < 0.01

PCPI 14,826.8 14,907.7 15,714.9 17,634.6 15,879.4 p < 0.01

10 Source: http://www.bea.gov/iTable/iTable.cfm?reqid¼70&step¼1&isuri¼1&acrdn¼5#reqid¼
70&step¼26&isuri¼1&7023¼7&7024¼Non-Industry&7001¼720&7090¼70&7029¼20&7031

¼5&7025¼5&7022¼20 (for regional per capita income data) and ftp://ftp.bls.gov/pub/special.

requests/cpi/cpiai.txt (for CPI data).
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according to any indicator with respect to all the other groups of cities. The

combination of local buzz and global pipelines seems therefore key to achieve

higher inventive outputs whereas the presence of one of the two effects only does

not seem sufficient. Neither a vibrant local buzz nor intense global pipelines per se

are associated to greater performances.

As a final observation, it is also worth remarking that the differences detected in

inventive and creative performances are matched by the differences in terms of

population density and per capita wealth, indicating that knowledge networks

(either internal or external to a city) develop more easily in densely populated

and wealthier settings, as highlighted in the literature on agglomeration economies

(Duranton and Puga 2001; Carlino et al. 2007).

16.5 Conclusions

This chapter has presented new evidence on the topological properties of knowl-

edge networks in 331 US cities on the basis of European Patent Office data for the

period 1990–2004. In particular, the chapter has examined simultaneously the

structure of the co-invention network within a city and the embeddedness of

metropolitan inventors within the broader US-wide collaboration network.

The indicators developed in this chapter allow to capture the propensity of US

cities to engage not only in local networking (i.e. the intensity of the local buzz) but,

more importantly, to entertain knowledge exchanges with actors located in other

places (i.e. the intensity of global pipelines). US cities have been classified according

to these dimensions and four main groups have been identified according to the

intensity of local and external connections with respect to the US median values.

Interesting results came out from this analysis. Firstly, the data suggest that internal

networking is crucial for external knowledge acquisition, absorption, recombination

and socialization at the local level, as networking cities exhibit the highest perfor-

mances in any respect. On the one hand, relying mostly on external sources of

knowledge, as for global cities, may open to risks of technological dependence, to

vulnerability to the interruption of knowledge flows through relied and trustworthy

channels and, overall, to lower inventive performance in terms of better quality

patents. On the other hand, the local buzz effect, prevailing in local cities, may be of

moderate impact if it is not nourished, enriched and complemented by external

linkages that can inject fresh and non redundant knowledge in the metropolitan

network. Local buzz and global pipelines seem therefore truly complementary and

bring super-linear effects, as the performance of networking cities demonstrate.

However, our results are based on a descriptive analysis comparing different groups

of cities according to their network structure with respect to their performance in the

same period, which prevents to advance causal claims on the relationship between

network structure and inventive performance. We hope to extend our future research

in this direction and to explore the interplay between local buzz and global pipelines

and their causal effects on cities inventive productivity in a dynamic perspective.

16 Local Buzz Versus Global Pipelines and the Inventive Productivity of US Cities 313



Secondly, external connections seem to be a vital mechanism to enhance local

creativity potential. Technological recombination and exploration critically

impinges on the capacity to scan external (and perhaps cognitively distant) fields

and bring in-house fresh and not redundant knowledge. External ties could be

strategically designed and exploited in order to enhance and improve knowledge

transfer and acquisition as well as to tap into specific technological domains and to

learn and improve upon them. Those nodes performing an interfacing function

between local and external knowledge systems, frequently termed in the literature

as gatekeepers (Giuliani and Bell 2005; Graf 2011), could be crucial in this regard.

It would be interesting to know more about the attributes of these actors and their

impact on a city rate of innovation.

Some cautionary notes about the interpretation of our findings should be finally

mentioned. Firstly, the use of patent data for analysis of innovation process and

performance is in fact subject to a number of limitations, and possibly distortions,

as frequently highlighted in the literature. Secondly, whereas the geographical roots

and nature of knowledge networks can be hardly overlooked as new ties are

primarily forged locally and ties tend to persist also after re-location into different

areas, social relationships and knowledge linkages may develop over and across

different geographical units, thus ultimately being a-spatial. The indicators and

analysis proposed in this chapter are a preliminary effort to take into account the

spatial dimension of knowledge networks and their impact on knowledge creation.
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Chapter 17

Research Collaboration and Regional

Knowledge Production in Europe

Slavomir Hidas, Martyna Wolska, Manfred M. Fischer,

and Thomas Scherngell

Abstract The focus of this study is on regional knowledge production in Europe,

with special emphasis on the interplay between intra- and inter-regional research

collaboration. The objective is to identify and measure effects of research collab-

oration on knowledge production at the level of European regions. We use a panel

version of the spatial Durbin model (SDM) for empirical testing. The European

coverage is achieved using 228 NUTS-2 regions covering all pre-2007 EU member

states except Cyprus, Greece and Malta. The dependent variable, regional knowl-

edge production, is measured in terms of fractional patent counts at the regional

level in the time period 2000–2008, using patents applied at the European Patent

Office (EPO). The independent variables include an agglomeration variable,

reflecting intra-regional research collaboration, measured in terms of employment

in knowledge intensive sectors, and a network variable, reflecting extra-regional

research collaboration, measured in terms of a region’s collaboration activities in

the EU Framework programmes (FPs), weighted by R&D expenditures in network

partner regions. We implement a panel version of the standard SDM that controls

for spatial autocorrelation as well as individual heterogeneity across regions, and

allows for the estimation of spatial spillovers from neighbouring regions. The

estimation results confirm the prevalence of agglomeration effects for regional

knowledge production, and, by this, the importance of co-location of R&D actors.
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Furthermore, the study provides evidence that inter-regional R&D collaborations in

the FPs significantly contribute to regional knowledge production.

17.1 Introduction

Today it is widely recognised that interactions and research collaborations among

organisations are essential elements of knowledge production processes (see, for

instance, Powell and Grodal 2005). Organisations must collaborate more actively

and more purposefully with each other in order to cope with converging technol-

ogies, and increasing market pressures due to changing patterns of demand in a

globalising world (see, for instance, Fischer 2001). In particular, firms have

expanded their knowledge bases into a wider range of technologies (Granstand

1998), requiring more diverse knowledge, so firms must learn how to integrate new

knowledge into existing products or production processes (Cowan 2004). It may be

difficult for a firm to develop this knowledge alone or acquire it via the market.

Thus, firms aim to form co-operative arrangements with other firms, universities or

research organisations that already have this knowledge to get earlier access to it.

In the recent past, organisations seem to have expanded the spatial range of their

collaboration activities, referred to as local buzz vs. global pipelines or the

local–global duality in the process of knowledge creation (see, for instance, Bathelt

et al. 2004). On the one hand, as a consequence of the globalisation process,

knowledge production becomes increasingly interconnected and internationalised.

The network of interactions between R&D actors rises considerably. On the other

hand, R&D activities remain bounded within a relatively narrow geographic area.

Taking regions – defined as subnational spatial units – as essential sites of knowl-

edge creation (see, for instance, Lagendijk 2001), this local–global duality is

reflected by the co-existence of, on the one hand, the co-location of actors produc-

ing knowledge inducing geographically localised, mostly intra-regional knowledge

spillovers (see, for instance, Fischer et al. 2006), and, on the other hand, of global,

more far-reaching research collaborations taping specific pieces of region-external

knowledge (see, for instance, Varga et al. 2010).

In a policy context, it is notable that regional, national and supranational

Science, Technology and Innovation (STI) policies as well as regional innovation

policies have shifted attention to supporting research collaborations between var-

ious organisations, in particular among firms and universities (see Caloghirou

et al. 2002, among others).1 Policy makers have to balance between two types of

1 This policy focus has been mainly triggered by various considerations in theoretical and

empirical literature of Economics of Innovation, Economic Geography, Regional Science and

Management Science (see Fagerberg and Verspagen 2009 for an overview). In particular, two

arguments are essential in this respect: First, innovation, knowledge creation and the diffusion of

new knowledge are the key vehicles for sustained economic growth of firms, industries or regions,

and, thus, are essential for achieving sustained competitive advantage in the economy (see, for

example, Romer 1990). Second, as mentioned above, interactions, research collaborations and

networks of actors are crucial for successful innovation (see, for instance, Fischer 2001).
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policies: on the one hand, policy that leads to economies of scale in knowledge

production by supporting further regional specialisation, and, on the other hand,

policy that promotes cross-regional R&D collaboration and accelerates inter-

regional knowledge diffusion particularly to regions where given knowledge is

not available (Pontifakis et al. 2009). While regional and national policy

programmes mainly address collaborative knowledge production within one region

or country, at the supranational level, such as the EU, more far-reaching, large-

distance collaboration is encouraged. The prime examples at the European level are

the European Framework Programmes (FPs) for Research and Technological

Development (RTD). They support pre-competitive R&D projects, creating a

pan-European network of actors performing joint project-based R&D (see, for

instance, Scherngell and Lata 2013).

Up to now, there is only little empirical evidence on the local–global duality in

knowledge creation at the regional level. In this study we take a regional perspec-

tive to address this question drawing on novel data sets providing information on

project based networking activities in the FPs. The objective is to identify and

measure effects of intra- and interregional research collaboration on knowledge

production at the level of European regions. We use a panel version of the spatial

Durbin model (SDM) for empirical testing. The European coverage is achieved

using 228 NUTS-2 regions covering all pre-2007 EU member states except Cyprus,

Greece and Malta. The dependent variable, regional knowledge production, is

measured in terms of fractional patent counts at the regional level in the time period

2000–2008, using patents applied for at the European Patent Office (EPO). The

independent variables include an agglomeration variable, reflecting intra-regional

research collaboration, measured in terms of employment in knowledge intensive

sectors, and a network variable, reflecting extra-regional research collaboration,

measured in terms of a regions’ collaboration activities in the EU Framework

programmes (FPs), weighted by R&D expenditures in network partner regions.

By this, we are able to estimate the distinct effects of network participation and

agglomeration on regional knowledge production. In estimating the effects, we

implement a panel version of the standard SDM that controls for spatial autocor-

relation as well as individual heterogeneity across regions. The specification incor-

porates a spatial lag of the dependent variable as well as spatial lags of the

independent variables. This allows for the estimation of spatial spillovers of

agglomeration and network effects from neighbouring regions by calculating scalar

summary measures of impacts.

The paper is organised as follows. Section 17.2 sheds some light on the theo-

retical background for the study, focusing on regional knowledge production and

the importance of extra-regional research collaboration for gaining access to exter-

nal knowledge sources. Section 17.3 outlines the econometric framework, specify-

ing the empirical model in form of a panel version of the SDM relationship to be

estimated. Section 17.4 comprises a detailed description of the empirical setting,

presenting the data and the dependent and independent variables as well as some

descriptive statistics. Section 17.5 presents the estimation results and their

17 Research Collaboration and Regional Knowledge Production in Europe 319



interpretation, before Sect. 17.6 concludes with a summary of the main results and

an outlook for future research.

17.2 Theoretical Background

The importance of research collaborations for generating new knowledge2 is

nowadays widely accepted (see, for instance, Powell and Grodal 2005). The

motives and drivers for organisations to engage in R&D collaborations with

firms, research organisations and universities are manifold; one of the most striking

arguments is the increasing complexity of innovation processes, most notably in the

context of converging and rapidly developing technologies (see, for instance, Pavitt

2005). Consequently, the absorption and integration of new knowledge from

various sources as well as a permanent search for novel combination opportunities

of complementary knowledge bases is the key to sustainable innovative capability.

As noted by Granstand (1998), innovating organisations have expanded their

knowledge bases into a wider range of technologies which requires the integration

of a more diverse set of external knowledge pieces. Collaborative arrangements

create incentives for interactive organisational learning which leads to faster

knowledge diffusion and stimulates the creation of new knowledge or the combi-

nation of pieces of existing knowledge in a new way. Such collaborations are

particularly useful in an environment characterised by uncertainty and complexity

such as knowledge production processes. Collaborating reduces the degree of

uncertainty and provides faster access to different kinds of knowledge, in particular

tacit knowledge (see, for example, Kogut 1988).3

2 Knowledge can be seen as a process, embedded in employees and firms’ routines (Fischer and

Froehlich 2001). For the purpose of this study, it is useful to distinguish between two types of

knowledge – tacit and codified (see, among others Polanyi 1967; Nonaka and Takeuchi 1995;

Fischer 2001). Tacit knowledge is embodied in a person and can be obtained by experience. It

requires rather interpersonal contact to diffuse, and, thus, is conditional on geographical proximity

(Fischer 2001; Varga et al. 2010). On the contrary, codified (explicit) knowledge is stated in an

explicit form, can be stored and transmitted easily over long distances almost frictionless (Bathelt

et al. 2004).
3 Incentives to cooperate and advantages arising from R&D collaborations may also be identified

using other theoretical arguments (Hagedoorn et al. 2000; Caloghirou et al. 2003). From the

perspective of transaction costs, firms and organisations entering into collaborative arrangements

can avoid high costs of internalising R&D activities. Industrial organisation theory argues that

R&D collaborations are suitable strategies to capture external knowledge. In addition, the man-

agerial perspective highlights an ability of a firm to learn from cooperation, thereby adopting new

skills and abilities, and, thus, improving its own competitive position after all. Both, managerial

and industrial organisation views, implicitly include further advantages arising from R&D collab-

orations, such as R&D costs sharing, economies of scale and scope, risk pooling or access to

complementary resources. Close interactions build trust and reduce the uncertainty, and, thus, the

complexity of production.
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The fundamental importance of research collaborations for knowledge produc-

tion is also reflected in the in the various systems of innovation concepts (see

Lundvall 1992 among many others). In this conception the sources of new knowl-

edge are often established between firms, universities, suppliers and customers. In

the concept of the regional innovation system, it is further assumed that innovating

actors are embedded in a regional innovation system – where the region is defined

as a subnational spatial unit – benefiting from spatial proximity to other actors (see

Asheim and Gertler 2005). Spatial proximity is considered to be of particular

importance since knowledge is in part tacit; Krugman (1991) argues that knowledge

flows are restricted with geographical boundaries due to cost of (especially tacit)

knowledge transmission, which in contrast to costs for the transmission of infor-

mation, rises with geographical distance. The distance decay pattern of knowledge

externalities has been confirmed in various empirical studies, beginning with the

pioneering study of Jaffe et al. (1993), followed by Autant-Bernard (2001),

Maurseth and Verspagen (2002), Fischer und Varga (2003), Fischer et al. (2006),

LeSage et al. (2007) or Fischer et al. (2009). Audretsch and Feldman (1996) provide

evidence that in industries, for which knowledge diffusion is particularly important,

innovative activity tends to be more spatially concentrated. It implies that knowl-

edge flows are encouraged by spatial proximity of different R&D actors including

firms, public and private research institutes, universities etc. Such organisations are

taking advantage of their co-location. These gains are also referred to as agglom-

eration economies or external economies of scale4 (Rosenthal and Strange 2004).

However, key players of the regional innovation systems, such as universities

and large knowledge-intensive firms, do not only benefit from the local knowledge

base, but increasingly are compelled to search for knowledge sources that are

geographically located further away in order to keep pace in the global innovation

competition (see, for example, Maggioni et al. 2007; Scherngell and Barber 2009,

2011; Wanzenböck et al. 2012). Such region-external knowledge sources are

tapped via region-external research collaboration activities – for instance in the

form of joint R&D projects, joint assignment of patents or joint conduction of

scientific publications – and/or labour mobility. These knowledge sources may be

explicitly valuable for such organisations to gain contact with less familiar pieces of

knowledge that may be important for their long-term development (see Maskell

et al. 2006).

In a policy context, the importance of research collaboration has also been

affirmed by the common vision of the EU to develop the European Research

Area, intended to integrate national science, technology and innovation (STI)

4 Two types of agglomeration economies may be specified. Localisation economies (called also

intra-industry externalities) emerge from the spatial concentration of economic activity within one

single industry, hence from the scale of the industrial specialisation (Marshall 1920; Arrow 1962;

Romer 1986). Urbanisation economies (intra-industry externalities) arise from the industrial

diversification, region-size (Jacobs 1969).
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policies (European Commission 2000), and to support international research col-

laboration across Europe. The main instrument to reach this goal are the EU

Framework Programmes (FPs) for Research and Technological Development

(RTD) that are funding programmes created to support and stimulate R&D pro-

jects5 between European organisations in order to boost technological competitive-

ness, on the one hand, while to ensure cohesion, on the other hand. By this, the FPs

provide a significant channel for organisations to tap region-external knowledge

sources, and may represent an example of geographically dispersed R&D collab-

orations6. Furthermore, increasing inter-regional connectedness that may be viewed

as an alternative explanation of regional knowledge production in addition to

conventional agglomeration economies, may provide regions with rather weak

agglomeration characteristics an opportunity to be highly productive in case of

being well inter-linked to inter-regional R&D collaboration networks (Varga

et al. 2010). The focus of this study is to test the interdependencies between

region-internal research collaboration – proxied by regional agglomeration effects –

and region external research collaboration – proxied by regional participation in the

FPs. By this, the study contributes to the literature on the local–global duality of

knowledge production processes from a regional perspective.

17.3 The Empirical Model

In order to estimate the relationship between regional knowledge production and

region-internal and region-external research collaboration, we use a panel version

of the Spatial Durbin Model (SDM) as introduced by Elhorst (2003). This is an

appropriate way to deal with the problem of spatial autocorrelation, and to estimate

the influence of spatial spillover effects. The panel version of the standard SDM

model controls not only for spatial autocorrelation but also for individual hetero-

geneity across regions (see LeSage and Fischer 2012). Denoting our set of regions

5 See, for instance, Breschi and Cusmano (2002) for a preliminary view on the emergent

pan-European network of firms, public research organisations, universities, consultants and gov-

ernment institutions jointly collaborating on projects across different research areas.
6 The geography of R&D collaborations within the FPs has attracted increasing attention in the

recent past. The study of Constantelou et al. (2004) confirms significant collaborative activity

among clusters of neighboring countries. Autant-Bernard et al. (2007) find that relational distance

by means of the firms’ position within a network matters more than their geographical location.

Maggioni et al. (2007) suggest that a region’s knowledge production is mainly influenced, besides

by regions that are located close in geographical space, also by regions that are close in relational

space. The study of Schnerngell and Barber (2009) provides evidence that geographical factors

matters for interregional collaboration intensities, whereas the effect of technological proximity

prevails. Schnerngell and Barber (2011) further show that geographical factors are less significant

for public research networks in comparison with the greater impact of geography on patterns of

industrial R&D collaboration networks.
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by i ¼ 1, . . ., N and our time periods by t ¼ 1, . . ., T, the empirical model to

estimate the relationship between research collaboration and regional knowledge

production is given by

yt ¼ ρWyt þ δ1at þ δ2Wat þ γ1kt�2 þ γ2Wkt�2 þ ηt ð17:1Þ

with

ηt ¼ μþ εt ð17:2Þ

where yt is the N–by–1 vector of observations on regional knowledge production in
N regions at time t. at denotes the N–by–1 vector of observations on the agglom-

eration variable at time t, capturing intra-regional research collaborations, while

kt�2 is the N–by–1 vector reflecting the observations on the network variable at time

t�2,7 measuring inter-regional research collaboration activities. δ1, γ1 are scalar

parameters to be estimated.

W is the N-by-N matrix of spatial weights reflecting the spatial configuration of

the regions with elements

wij ¼ 1 if s
1ð Þ
ij � s

1ð Þ
ik ið Þ

0 otherwise

(
ð17:3Þ

where s
ð1Þ
ij measures the geographical distance between two given regions i and j. ki

indicates the k nearest neighbouring of region i. Following previous empirical

research, we set k ¼ 5 (see, among others, LeSage and Pace 2008; Scherngell

and Lata 2013).

As a consequence,Wyt denotes the N–by–1 vector representing the spatial lag of
regional knowledge production in k nearest neighbours at time t. Its coefficient ρ
measures the strength of spatial dependence. Similarly, N–by–1 vectors Wat and
Wkt�2 denote the average of observations on the agglomeration and the network

variable in k nearest neighbours at time t and t�2, respectively. δ2, γ2 are the

associated scalar parameters to be estimated.

εt ¼ (ε1t, . . ., εNt)0 is the N–by–1 vector of disturbances for time period t
which is independently and identically distributed with zero mean and variance

σ2ε. μ ¼ (μ1, . . ., μN)0 is the N–by–1 vector representing random spatial specific

effects, i.e. μ is treated as a random element and is assumed to be independently and

7 Following previous empirical studies (Furman et al. 2002; Varga et al. 2010), we decide to

impose a lag of 2 years on the network variable, as it takes some time between the inputs translate

into measurable outputs. In case of the agglomeration variable, time lag is not necessary, as the

variable varies only slightly over the analysed period.
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identically distributed with zero mean and variance σ2μ.8 Since space-specific time-

invariant effects are likely to have an impact on the dependent variable, their

omission could lead to a biased and inconsistent estimation result (Elhorst 2010b).

Inclusion of lags of both dependent and independent variables allows to account

for spatially autocorrelated omitted variables that are likely to be correlated with the

included explanatory variables (LeSage and Pace 2009). Furthermore, the SDM

model specification offers great analytical opportunities. Having the unconstrained

SDM model as an initial model enables us to follow the general-to-simple model

selection rule by testing whether the model can be simplified (Fischer and Wang

2011). The SDM model nests a spatial lag (SAR) and a spatial error (SEM) model

as special cases. Even when one of these models is the true data generating process,

the SDM model provides unbiased estimation results (LeSage and Pace 2009).

When δ2 ¼ γ2 ¼ 0, the model is reduced to the SAR model and comprises only a

spatial lag of the dependent variable. By setting [δ2 γ2] + ρ [δ1 γ1] ¼ 0, the SDM

model is simplified to the SEM model.9 However, this restriction is only correct

when there are no omitted variables correlated with the included explanatory vari-

ables (LeSage and Fischer 2008). In order to find an appropriate model specifica-

tion, a likelihood ratio test is carried out. The double difference between the values

of log-likelihood function for the SDM model and a model with a restriction is

chi-squared distributed with a number of degrees of freedom reflecting the number

of imposed restrictions.

An additional specific advantage of using the SDM in the context of our research

focus is the possibility to measure the scale of intra- and inter-regional spillovers, or

so called direct and indirect effects (LeSage and Pace 2008).10 Besides direct

impacts of a change of independent variables ai and ki on knowledge production

measured by means of patents y of their respective region i (direct effects), we
can additionally observe the effect of changes of these variables in other regions

j on region i (indirect effects). Such partial derivatives represent possible

spillover impacts from all other regions N�1. Since we consider changes in each

8 The model with random effects is more appropriate in case of our sample data, because variables

that do not change or change only slightly over time periods cannot be estimated using the model

with fixed effects, since they are eliminated in estimation process (Elhorst 2010b). Such a variable

in our model is the agglomeration variable and its spatial lag. Moreover, the model with fixed

effects can be estimated consistently only when the time domain T is sufficiently large (Elhorst

2010b). As our sample comprises a relatively small number of time periods T ¼ 9 as compared to

the number of cross sectional observations N ¼ 228, the model with random effects is more

suitable.
9 There is also a possibility to derive a model where only independent variables exhibit spatial

dependence and observations of the dependent variable are assumed to be spatially independent

(ρ ¼ 0). Finally, the restrictions ρ ¼ 0 and δ2 ¼ γ2 ¼ 0 would result in a standard OLS model

(Fischer and Wang 2011).
10 Taking only the parameter estimates δ1 and γ1 for the agglomeration and network variables into

account would be an incorrect interpretation of the model, since they do not include the effect of so

called feedback loops that arise as a result of impacts passing through neighboring regions and

back to the regions themselves (LeSage and Pace 2009).
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j ¼ 1, . . ., N�1 region including changes in the own region, these results can be

expressed by means of N-by-N matrices for both independent variables:

Sa Wð Þ ¼ ∂y=∂a ¼ IN � ρWð Þ�1 INδ1 þWδ2ð Þ ð17:4Þ
Sk Wð Þ ¼ ∂y=∂k ¼ IN � ρWð Þ�1 INγ1 þWγ2ð Þ ð17:5Þ

The matrices Sa (W ) and Sk (W ) of all partial derivatives are correct measures of

local (direct) and spillover (indirect) impacts arising from changes in the indepen-

dent variables a and k of each region i on the dependent variable y of the respective
region and all other regions (LeSage and Pace 2009; Elhorst 2011). The

off-diagonal elements represent cross-partial derivatives, which can be summarised

into scalar measures representing indirect impacts using the average of either the

row-sums or column-sums of the matrix elements excluding the diagonal. The

average summary measure of direct effects is defined as the average of the sum

of the own partial derivatives on the main diagonal of the matrices. The average

total scalar measure is represented by the sum of direct and indirect effect averages

(LeSage and Pace 2009).

17.4 Data and Variables

In this study, European coverage is achieved using N ¼ 228 NUTS-2 regions

(revision 2003) covering all pre-2007 EU member states except Cyprus, Greece

and Malta. The choice of NUTS-2 regions is motivated by the fact that they have an

appropriate size to catch sub-national characteristics (see, for instance, LeSage and

Fischer 2012). The time domain comprises T ¼ 9 time periods from 2000 to 2008.

To measure regional knowledge production, we use fractional counts of patent

applications to the European Patent Office sorted by the by priority year (date of

application) derived from Eurostat.11 We use fractional counts, i.e. we count patents

based on the number of inventors listed on a patent application, dividing the number

of inventors by the number of different regions in which they are located. For a

patent with three different inventors in three different regions we count 1/3 for each

region so that the total sum of counts for one patent equals to 1 (Eurostat 2007).

As introduced in the previous section, our independent variables consist of the

agglomeration variable and the network variable. We use employment in knowl-

edge intensive sectors derived from Eurostat as a proxy for agglomeration effects

(see, for instance, Varga et al. 2010). By knowledge intensive sectors, we

11As inventions have to be novel, non-trivial and commercially applicable in order to be protected

by a patent, patents can be recognised as quantitative indicators of inventions. Nevertheless, the

use of patents has some limitations. Not all inventions that could be patented are actually patented,

because patenting is a voluntary strategic decision. Further, not all inventions are allowed to be

patented, for example a program code (OECD 1994).
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understand high- and medium-high-technology manufacturing, high-technology

knowledge intensive services, knowledge intensive market services, financial ser-

vices as well as the education and the health sector, as defined by Eurostat.

The network variable is measured in terms of the number of regional EU

Framework programme (FPs) participations, weighted by R&D expenditures in

partner regions. Thus, the measure is defined as a product of a N-by-N collaboration

matrix (see Scherngell and Barber 2009 and 2011), and a N–by–1 vector of total

regional R&D expenditures for each time period. The data on regional R&D

expenditures come from Eurostat. For the construction of the collaboration matrix

we use data from the EUPRO database that contains information on research

collaborations of participating firms and organisations within the FPs. The

time period 1998–2006 covers the fifth (1998–2002) and the sixth (2002–2006)

FP. For each time period, the collaboration matrix contains the number of link-

ages in terms of joint project participations between all (i, j)-region pairs, given

i ¼ 1, . . ., N regions in the rows and j ¼ 1, . . ., N regions in the columns. Since the

network variable acts as a proxy for extra-regional research collaboration, we do

not consider intraregional knowledge flows.

Table 17.1 presents some summary statistics on the three model variables. It can

be seen that for the dependent variable, that is regional knowledge production, as

well as for the agglomeration variable, we cannot observe a time trend concerning

mean knowledge production – as captured by regional patenting – and mean degree

of agglomeration – as captured by employment in knowledge intensive sectors. In

contrast, for the network variable – captured by regional participation in the FPs

weighted by R&D expenditures in network partner regions – we can observe a sharp

increase in mean regional FP participation intensity between 2000 and 2008.

17.5 Estimation Results

In this section we present and discuss our empirical findings. All variables in the

model are defined in log form. Table 17.2 presents the parameter estimates of the

SDM model. Furthermore, we report model specification tests that confirm the

choice of the SDM specification with random effects. Using a likelihood ratio test,

we can reject the restriction of the model to the SAR model, which includes only a

spatial lag of the dependent variable (284.26, p ¼ 0.000). A Breusch-Pagan test

statistic validates the significance of the random effects (4,721.03, p ¼ 0.000). All

parameter estimates of the independent variables in the SDM model specification

are highly significant. However, these estimates cannot be interpreted as marginal

effects of changes in the agglomeration and network variables on the knowledge

production variable. As mentioned in Sect. 17.3, the parameters estimates differ

from direct effect estimates that contain also feedback effects arising partly due to

the coefficient of spatially lagged dependent variable, which we find highly statis-

tically significant, and partly due to the highly significant coefficients of spatially

lagged independent variables (Elhorst 2010a). It is also important to remark that
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highly significant spatially lagged variables do not imply significant indirect effects

of the respective variables (see Table 17.3). The spatially lagged variables indicate

just impacts of nearest neighbouring regions as defined by the spatial weight matrix

W.

Table 17.3 reports the average summary measures along with 95 % credible

intervals indicating that the direct, indirect and total effects of the explanatory

variables, except the indirect effect of the agglomeration variable, are different

from zero based on the credible intervals. If we consider the average direct impacts,

it is important to note that they are close to the SDM model coefficient estimates

reported in Table 17.2. Differences between these two measures represent feedback

effects that arise from induced effects in the neighbours of the neighbours of region

i, successively in the neighbours of those neighbours, and continuing throughout the
whole system, including some feedback effects to the region i itself.

The direct effect of the agglomeration variable that is highly significant appears

to be 0.519. Since the coefficient estimate is equal to 0.523, the feedback effect of

this variable amounts to �0.004 or 0.8 % of the direct effect. Similarly, the

feedback effect of the network variable is the difference between the highly

significant direct effect 0.082 and the parameter estimate 0.075, that is 0.007 or

8.5 % of the direct effect. Thus, the feedback effect turns out to be relatively small

and negative for the agglomeration variable. The feedback effect of the network

variable, although still relatively small, shows much stronger and positive impact

than in the previous case.

Direct effect estimates show in both cases a positive impact, i.e. a change of the

independent variable in region i on the knowledge production in that region. This

impact is much higher in magnitude in case of the agglomeration variable (0.519). It

confirms the importance of co-location of R&D actors. The direct impact of the

network variable, i.e. a region’s own collaboration activity with other regions, is

lower as compared to the agglomeration variable (0.082). However, the results

confirm the direct impact of research collaborations within the EU FPs on regional

Table 17.2 Parameter estimates from the SDM with random effects (Nobs ¼ 2052)

Variable Coefficient Standard error p-value

Agglomeration variable (δ1) 0.523 0.058 0.000

Network variable (γ1) 0.075 0.011 0.000

Spatially lagged variables

Knowledge production ( ρ) 0.413 0.028 0.000

Agglomeration variable (δ2) �0.244 0.062 0.000

Network variable (γ2) 0.059 0.015 0.000

Model specification tests

Log Likelihood �1,807.91

LR test for spatial lag 284.26 ( p ¼ 0.000)

BP test for random effects 4,721.03 ( p ¼ 0.000)

The dependent and the independent variables are defined as given in the text. LR denotes the

Likelihood Ratio test for the spatial lag specification, while BP denotes the Breusch-Pagan test for

the random effects specification.
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knowledge production, when considering patents as an output of knowledge pro-

duction, though the agglomeration characteristics of a region play a much more

prominent role.

Indirect effects of the agglomeration variable are not significant suggesting that

the employment in knowledge intensive sectors has only a local impact, in other

words, it influences only its own region. On the contrary, the indirect impact

estimate for the network variable indicates considerable average spillover effect

to other regions (0.147). The indirect effect of a change in the network variable

appears to be 1.8 times the magnitude of the direct effect of the same variable. Thus,

this result suggests that regions with less developed R&D infrastructure may profit

from collaborations with other regions. The total impacts of both independent

variables on knowledge production are positive and highly significant (0.472 and

0.229). A 10 % increase in the agglomeration variable increases regional produc-

tion by 4.72 %. Similarly, a 10 % increase in the network variable results in a

2.29 % increase in regional knowledge production.

17.6 Conclusions

Research collaborations are nowadays to be seen as one of the most essential

elements for the knowledge production of firms, universities and research organi-

sations. The focus of this study has been on regional knowledge production in

Europe, devoting special emphasis to the question how research collaborations

contribute to knowledge production processes from a regional perspective. We

have employed a spatial Durbin model (SDM) relationship to test whether region-

internal and region-external research collaboration contribute to regional

Table 17.3 Average scalar

summaries from the SDM
Variable 0.05 level Mean 0.95 level

Agglomeration variable

Direct impact 0.402 0.519* 0.622

(0.055)

Indirect impact �0.170 �0.047 0.079

(0.063)

Total impact 0.401 0.472* 0.538

(0.035)

Network variable

Direct impact 0.062 0.082* 0.102

(0.010)

Indirect impact 0.108 0.147* 0.188

(0.021)

Total impact 0.192 0.229* 0.269

(0.035)
*significant at the 0.001 significance level; standard errors in

brackets
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knowledge production, using 228 NUTS-2 regions of Europe as our spatial frame-

work, and accounting for spatial spillovers between our system of spatial units.

Regional knowledge production has been proxied by using information on regional

patenting for the years 2000–2008, while region-internal research collaboration has

been measured by means of an agglomeration variable that is defined by the share of

a region’s employment in knowledge intensive sectors, and region-external

research collaboration by regional participation in the EU Framework Programmes

(FPs) that have been specifically designed to foster international research collabo-

ration across Europe.

The study produces promising results in the context of the literature dealing with

the local–global duality of knowledge production, also referred to as the local-buzz

vs. global pipelines in the process of knowledge creation. The estimation results

confirm the prevalence of agglomeration effects for regional knowledge produc-

tion, and, by this, the importance of co-location of R&D actors. However, the most

important outcome of the study is that it provides statistical evidence that inter-

regional R&D collaborations in the FPs significantly contribute to regional knowl-

edge production, i.e. knowledge flows via such global knowledge pipelines – often

corresponding to large-distance collaborations of key players of the regional inno-

vation system – significantly contribute to the overall regional knowledge produc-

tion output in form of regional patents.

The results are also important in a policy perspective, as this study is one of the

first few studies that provides systematic statistical evidence on the positive con-

tribution of participation in the FPs to knowledge production across Europe, and

that such FP collaborations may indeed induce knowledge flows between regions

that are located further away, complementing intra-regional inputs to the knowl-

edge production process. Further, the results imply that considerable benefits may

arise from R&D collaborations for lagging regions.

Some ideas for a future research agenda come to mind. First, alternative

measurements of research collaboration may be considered, in particular for

extra-regional research collaborations, having in mind that research collaborations

in the FPs constitute only a very small and specific subsample of total research

collaborations. Second, other model specifications may be considered, for instance

models for dynamic spatial panels (see Elhorst 2011), in order to be able to disclose

and characterise dynamic effects in the relationship between regional knowledge

production and intra-regional vs. extra-regional research collaboration.
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Appendix: List of Regions

In this study we use 228 NUTS-2 regions (revision 2003) covering all pre-2007 EU

member states except Cyprus, Greece and Malta. In addition, the list does not

include the Spanish North African territories of Ceuta y Melilla, the Portuguese

non-continental territories Azores and Madeira, and the French Departments

d’Outre-Mer Guadeloupe, Martinique, French Guayana and Reunion.

Austria: Burgenland, Kärnten, Niederösterreich, Oberösterreich, Salzburg, Stei-
ermark, Tirol, Vorarlberg, Wien

Belgium: Prov. Antwerpen, Prov. Brabant-Wallon, Prov. Hainaut, Prov. Lim-

burg (B), Prov. Liège, Prov. Luxembourg (B), Prov. Namur, Prov. Oost-

Vlaanderen, Prov. Vlaams-Brabant, Prov. West-Vlaanderen, Région de Bruxelles-

Capitale/Brussels Hoofdstedelijk Gewest

Czech Republic: Jihovýchod, Jihozápad, Moravskoslezsko, Praha,

Severovýchod, Severozápad, Střednı́ Morava, Střednı́ Čechy

Denmark: Danmark

Estonia: Eesti

Finland: Åland, Etelä-Suomi, Itä-Suomi, Länsi-Suomi, Pohjois-Suomi

France: Alsace, Aquitaine, Auvergne, Basse-Normandie, Bourgogne, Bretagne,

Centre, Champagne-Ardenne, Corse, Franche-Comté, Haute-Normandie, Île de

France, Languedoc-Roussillon, Limousin, Lorraine, Midi-Pyrénées, Nord –

Pas-de-Calais, Pays de la Loire, Picardie, Poitou-Charentes, Provence-Alpes-Côte

d’Azur, Rhône-Alpes

Germany: Arnsberg, Berlin, Brandenburg, Braunschweig, Bremen, Chemnitz,

Darmstadt, Dessau, Detmold, Dresden, Düsseldorf, Freiburg, Gießen, Halle, Ham-

burg, Hannover, Karlsruhe, Kassel, Koblenz, Köln, Leipzig, Lüneburg, Magdeburg,

Mecklenburg-Vorpommern, Mittelfranken, Münster, Niederbayern, Oberbayern,

Oberfranken, Oberpfalz, Rheinhessen-Pfalz, Saarland, Schleswig-Holstein, Schwa-

ben, Stuttgart, Thüringen, Trier, Tübingen, Unterfranken, Weser-Ems

Hungary: Dél-Alföld, Dél-Dunántúl, Észak-Alföld, Észak-Magyarország,

Közép-Dunántúl, Közép-Magyarország, Nyugat-Dunántúl

Ireland: Border, Midland and Western; Southern and Eastern

Italy: Abruzzo, Basilicata, Calabria, Campania, Emilia-Romagna, Friuli-Vene-

zia Giulia, Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia, Sarde-

gna, Sicilia, Toscana, Trentino-Alto Adige, Umbria, Valle d’Aosta/Vallée d’Aoste,

Veneto

Latvia: Latvija
Lithuania: Lietuva
Luxembourg: Luxembourg (Grand-Duché)

Netherlands: Drenthe, Flevoland, Friesland, Gelderland, Groningen, Limburg

(NL), Noord-Brabant, Noord-Holland, Overijssel, Utrecht, Zeeland, Zuid-Holland

Poland: Dolnośląskie, Kujawsko-Pomorskie, Lubelskie, Lubuskie, Łódzkie,

Mazowieckie, Małopolskie, Opolskie, Podkarpackie, Podlaskie, Pomorskie,
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Śląskie, Świętokrzyskie, Warmińsko-Mazurskie, Wielkopolskie,

Zachodniopomorskie

Portugal: Alentejo, Algarve, Centro (P), Lisboa, Norte

Slovakia: Bratislavský kraj, Stredné Slovensko, Východné Slovensko, Západné

Slovensko

Slovenia: Slovenija
Spain: Andalucı́a, Aragón, Cantabria, Castilla y León, Castilla-La Mancha,

Cataluña, Comunidad Foral de Navarra, Comunidad Valenciana, Comunidad de

Madrid, Extremadura, Galicia, Illes Balears, La Rioja, Paı́s Vasco, Principado de

Asturias, Región de Murcia

Sweden: Mellersta Norrland, Norra Mellansverige, Småland med öarna, Stock-

holm, Sydsverige, Västsverige, Östra Mellansverige, Övre Norrland

United Kingdom: Bedfordshire & Hertfordshire; Berkshire, Buckinghamshire &

Oxfordshire; Cheshire; Cornwall & Isles of Scilly; Cumbria; Derbyshire & Not-

tinghamshire; Devon; Dorset & Somerset; East Anglia; East Riding & North

Lincolnshire; East Wales; Eastern Scotland; Essex; Gloucestershire, Wiltshire &

North Somerset; Greater Manchester; Hampshire & Isle of Wight; Herefordshire,

Worcestershire & Warkwickshire; Highlands and Islands; Inner London; Kent;

Lancashire; Leicestershire, Rutland and Northamptonshire; Lincolnshire; Mersey-

side; North Eastern Scotland; North Yorkshire; Northern Ireland; Northumberland

and Tyne and Wear; Outer London; Shropshire & Staffordshire; South Western

Scotland; South Yorkshire; Surrey, East & West Sussex; Tees Valley & Durham;

West Midlands; West Wales & The Valleys; West Yorkshire
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Chapter 18

Policy Induced Innovation Networks: The

Case of the German “Leading-Edge Cluster

Competition”

Uwe Cantner, Holger Graf, and Susanne Hinzmann

Abstract The last decades saw a pronounced shift in innovation policy in Ger-

many and many other countries towards increased funding of cooperative R&D.

Over the last years, competitions between regional initiatives pushed this trend even

further by adding a regional perspective, by increasing the scope of funding, and by

fostering interaction between a large number of actors. In 2007 the German

ministry for education and research (BMBF) started the Leading-Edge Cluster

Competition (Spitzencluster-Wettbewerb) in which 15 clusters were selected in

three waves (2008, 2010, 2012) and are funded for a 5-year period with up to

40 million Euro each. Our paper presents selected results regarding the influence of

government funding on cooperation networks within four of the clusters that were

successful in the first wave of the Leading-Edge Cluster Competition. More spe-

cifically, we analyse the extent of policy influence on the network of most important

cooperation partners, its geographic reach, and the changes of network structure in

general. Our empirical analysis is based on original data that was collected in 2011

with cluster actors (firms and public research) who received government funding.

Our results indicate that the program was quite effective in initiating new cooper-

ations between cluster actors and in intensifying existing linkages. The vast major-

ity of the linkages which are influenced by the cluster program are between actors

located in the cluster region. With respect to the influence of the cluster policy on

network structure, we find an increase in network centralization. Small and medium
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sized enterprises used the chance to connect with the local ‘stars’, but not as much

among each other.

18.1 Introduction

The introduction of the BioRegio contest in the early 1990s marked the beginning

of a new era of R&D funding programs. The German innovation policy experienced

a paradigmatic shift away from traditional R&D funding measures towards contests

between regions with a special focus on collaborative R&D projects. Central to

these new competitive approaches were the stimulation of interregional competi-

tion, promoting the establishment of regional clusters and the improvement of the

functionality of the regional innovation system (Eickelpasch and Fritsch 2005;

Staehler et al. 2007). In this context, the presumed economic and technological

benefits of clustering serve as a main rationale for modern cluster policies. The

main current national cluster funding program – the Leading-Edge Cluster Com-

petition (Spitzencluster-Wettbewerb) – was launched in 2007 by the German

ministry for education and research (BMBF). 15 clusters were selected in three

waves (2008, 2010, 2012) and have been funded for a 5-year period with up to

40 million Euro each. One of its main goals is the stimulation of regional network-

ing as a lever for innovation and economic growth.

With the rising number of these programs, one major question arose: Does the

public promotion of clusters provide an effective and/or efficient measure to

achieve the defined goals? Currently, only a few studies try to provide an answer

to this question by evaluating cluster policies. To fill this gap, the present chapter

examines the impact of the Leading-Edge Cluster Competition (hereinafter referred

to as LECC) on networking in the selected clusters. In analysing a unique dataset

gathered from a survey of the beneficiaries, we are able to directly attribute the

creation of linkages to policy influence. In particular, we contribute to the literature

in two ways: first, we enrich the discussion on the effectiveness of policy endeav-

ours and add to the rare empirical evidence on the impacts of cluster policies.

Second, this study is one of the few which analyses the effects of a specific cluster

policy on the linkages and the related network structure by means of social network

analysis (SNA).

The remainder of the chapter is organized as follows: In Sect. 18.2 we provide

the basic theoretical rationales for cluster policies and discuss the results of existing

studies that focused on the evaluation of cluster policy impacts. Subsequently, we

briefly introduce the concept and objectives of the LECC and describe the research

methodology, focusing on the network aspect, in Sect. 18.3. We present our results

in Sect. 18.4 and conclude in Sect. 18.5.
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18.2 The Leading-Edge Cluster Competition, Clustering

and Cluster Policies

In 2007 the German ministry for education and research (BMBF) followed up

previous successful devices by launching the LECC, an initiative that aims at

strengthening Germany’s innovation potential and economic success by means of

promoting regional clusters. The support of “Leading Edge Clusters” should result

in the exploitation of regional innovation potentials and finally in innovation and

economic growth. The program was open for all types of technologies and focused

on the funding of clusters with the most promising strategies for future markets that

have the potential to count among the “Leading Edge” in their respective industry

(BMBF 2012).

Overall, 15 clusters were selected in three waves (2008, 2010, 2012), to be

labeled as “Leading-Edge Clusters” and to be funded for a 5-year period with up to

40 million Euro each. The selection was consigned to an independent jury of

publicly renowned experts from industry and academia.

Moreover, an accompanying evaluation is conducted to monitor the achieve-

ment of the declared goals and to derive concrete recommendations for the

advancement of the measurement. Therefore, timely evaluations, especially of

innovative funding schemes, are a crucial learning mechanism for the adaptive

policy maker (Metcalfe 1995).

One main claim of the program is the support of regional networks. The idea is

that the creation of an innovative environment, including intensive R&D collabo-

ration between research institutes and industry, should boost an eminent innovative

performance that allows for reaching an international leading position.

The entering of regional networks as a focal point of the national research and

innovation policy rooted in the increased perception of innovative activities

exhibiting a strong regional component and that embeddedness in networks is

crucial to firms’ innovativeness and competitiveness. Thus, theoretical concepts

that account for the regional character of innovation, such as the cluster approach

(Porter 1998) or the idea of the regional innovation system (Cooke and Morgan

1994; Braczyk et al. 1998), constitute the rationale for modern innovation policy.

Since the end of the ninetieth century, scholars theorize on the economic benefits

that arise for firms locating in geographic agglomerations of related industries

(Marshall 1890; Porter 1998). In addition, several empirical studies provide evi-

dence on the positive effects of co-location on innovation (Audretsch and Feldman

1996; Baptista and Swann 1998; Beaudry and Breschi 2003; Aharonson et al. 2008;

Lecocq et al. 2009).

The reasons for clustering are manifold. Theorists argue that firms in clusters

exploit the advantages of low transaction costs as they are located close to special-

ized suppliers and clients and have access to a specialized labor pool or are exposed

to competitive pressure which drives profitability (e.g. Porter 1998). Furthermore,

the proximity to scientific institutions and firms within the same or related indus-

tries results in the existence of a common knowledge spillover pool. Nevertheless,
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spatial proximity per se is neither a necessary nor a sufficient condition for

knowledge spillovers (Giuliani 2007; Breschi and Lissoni 2009). The exploitation

of existing innovation potentials in certain regions and the efficiency of the regional

innovation system depends heavily on the degree of networking among regional

actors (Koschatzky 2000; Sternberg 2000; Fritsch and Eickelpasch 2005).

Innovations develop during a collective learning process of several actors in

which common knowledge generation, accumulation and diffusion are crucial

ingredients (Asheim and Gertler 2006). Especially in the early stages of technology

development, when knowledge is specific and complex, continuous communication

and face-to-face contacts are indispensable for the efficient transmission of knowl-

edge (Feldman 1994; Breschi and Lissoni 2001). The ease and costs of linkages and

knowledge exchange are in turn related to the geographical distance of the corre-

spondent actors. Moreover, spatial proximity allows for the development of trustful

relationships and decreases the social distance among related actors (Boschma

2005). Hence, a firm’s integration into the regional innovation network providing

access to external knowledge sources is a crucial determinant of the firm’s learning

process and resulting innovative capabilities (Koschatzky 2000).

Although these insights constitute the core rationale for regional cluster policies

fostering joint R&D projects, potential gains from clustering do not suffice as a

legitimization for political intervention. According to economic welfare theory,

political interference is justified when the market coordination mechanisms are not

able to result in efficient/optimal outcomes. Evolutionary economists complement

these classical arguments by pinpointing to the existence of system failures. Related

to this view, the malfunctioning or ineffectiveness of innovation systems provides a

reason for political action. Particularly, the presence of network failures in the sense

of a deficiency of an optimal degree of linkages among actors in the innovation

system formulates a rationale for cluster policies (Carlsson and Jacobsson 1997;

Andersson et al. 2004). Hence, the declared aim of the current German cluster

policy, the LECC and related programs is the generation of value added for the

region and for the national economy by stimulating the creation of regional

networks.

With the expiration of the early pioneer programs and the subsequent introduc-

tion of new expanded instruments, such as the LECC in Germany, questions

regarding the effectiveness and/or efficiency of the public promotion of clusters

came up. Evaluation studies of cluster policies were introduced with the purpose to

analyse the surplus for the region and the economy that is attributable to the funding

measure. Due to the long term character of these effects and the infancy of

evaluation concepts, quantitative impact studies on cluster policies are relatively

rare and there have been only few attempts to apply SNA in the context of cluster

policy evaluation (see Giuliani and Pietrobelli 2011 for a review). Moreover, the

few existing analyses provide ambiguous results.

Martin et al. (2011) evaluate the impact of cluster policy on certain firm vari-

ables (for instance production and employment) and find no robust effects com-

pared to non-funded firms. In fact, the policy measure which was included in their

examination, the French “Local Productive Systems” program, focused rather on
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the idea of the industrial districts and merely interfirm collaboration than on the

concept of the regional innovation system. Nishimura and Okamuro (2011) find that

mere participation in the Japanese Industrial Cluster Project has no significant

effect on the R&D productivity of firms. Only if cluster participants collaborate

with national universities in the same cluster region positive effects were observed.

In a more general framework, Fornahl et al. (2011) evaluate how R&D subsidies,

network embeddedness, and locational factors are related to the innovative perfor-

mance of biotech firms in Germany. Their findings suggest that location in a cluster,

even after controlling for embeddedness into knowledge networks, has a positive

effect on patent performance. In contrast, R&D subsidies have no effect when given

to single firms, and only a slight effect when R&D collaborations are supported.

Counterfactual analyses of specific cluster funding programs in Germany show that

the success of BioRegio and related programs is grounded above all on the

mobilization of long-term cooperations that would not have existed without the

program. In this process, primarily collaborations between firms and research

institutions were initiated (Staehler et al. 2007). Similar results are obtained by

Falck et al. (2010), who find that firms in targeted industries of a regional cluster

initiative are more likely to become innovators despite a reduction of their R&D

expenditures. Engel et al. (2012) compare the performances of winning regions to

non-winning regions in the BioRegio and BioProfile contest in terms of patents and

public R&D projects. They find strong short-term effects, but these effects seem to

diminish in the long run.

Overall, it appears that only cluster policies that lead to increased and/or

intensified collaboration have an impact on innovative and economic performance

of funded actors. It remains unclear how policies change the structure of interaction

in form of collaboration networks and how these changes influence knowledge

flows and subsequent performance. Since we evaluate an on-going program, we

focus on the former, i.e. on the policy effect on the structure and intensity of

interaction as an intermediate outcome rather than on economic impacts. With

the application of SNA, we are able to observe the underlying network structures in

the selected clusters and the ramifications originated by political influence. This

allows us to provide a hint whether first politically desired effects occurred.

18.3 Data and Research Methodology

Our empirical analysis is based on a survey of actors (benefiting firms and public

research organizations) of four clusters (labelled A to D) that were chosen as

“Leading-Edge Clusters” in the first wave of the competition at the end of 2008.1

The survey was conducted in late summer of 2011, almost 3 years after the

1 The response rate, especially of firms, in one cluster was too low for a meaningful analysis. For

reasons of confidentiality, we have to refrain from characterizing the clusters in more detail. Even
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announcement of the winning cluster regions of the first wave, to capture first

effects on the network structure. Additionally, in autumn 2011 face-to-face inter-

views were conducted with a small sample (6) of actors per cluster (24 in sum) in

order to add to our understanding and complement the interpretation of the results

from the survey.

We construct R&D networks on the basis of survey data by means of a free recall

method with a fixed choice design (Guliani and Pietrobelli 2011). Thereby, bene-

ficiaries (firms and research institutes) were asked to list the names and address of

their up to ten (strategically) most important R&D cooperation partners. The

address information was used to assign actors to be located in the cluster region,

in the rest of Germany, in the rest of Europe, or outside Europe. The cluster regions

are defined as those regions which host the majority of the respective beneficiaries.

All clusters span several NUTS 3 regions (Kreise) and some cross boundaries of

NUTS 2 regions (Länder). Therefore, the cluster regions are individually defined as

combinations of NUTS 3 regions.

Even though it is argued that the roster recall method is to be preferred (ter Wal

and Boschma 2009; Giuliani and Pietrobelli 2011), we chose the free recall design

for mainly two reasons. First, the generation of a fixed list of actors (roster) would

have led to large differences in the size of the clusters (imposed by the empirical

design), since the cluster managements define their boundaries in quite different

ways (e.g. only funded actors, only formal members of the cluster association, all

actors that somehow participate in cluster activities). Secondly, with a roster recall

linkages to R&D partners who are not cluster actors could not be observed.

However, such extra local (and extra cluster) linkages are of high relevance for

cluster success (Bathelt et al. 2004). Our decision for the fixed choice approach in

limiting the number of partners to the ten most important ones followed primarily

two considerations. On the one hand the acquisition effort of sufficient data for the

network analysis is still within the bounds of feasibility for the respondents. On the

other hand, the focus on the most important R&D partners allows us to assume an

equal weight of the mentioned linkages and prevents the overestimation of linkages

with lower intensity.

The formation of R&D cooperations is based on the expected benefits of both

partners arising from collaborative activities. These benefits can arise in different

ways depending on the type of strategies partners pursue.

To grasp in more detail the nature of the observed network and to understand the

underlying motivations that lead to the choice of the partner or the maintaining of a

link, we collected information on attributes of these linkages, namely the reason for

the strategic importance of the link. Motives to cooperate are manifold: collabora-

tion partners might be chosen as a valuable source “of applied knowledge” or “of

basic knowledge”. In both cases, learning from the partners’ competencies is a

central rationale for collaboration. Cooperations might also be formed because

though the clusters differ with respect to technological specialization, age, and location, we cannot

make use of this information in our analysis.
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partners supply their specific capabilities to a common task, i.e. “complementary

competences” are the source of strategic importance of a partnership. Partners

might also be valuable because of their specific “research infrastructure” not

present in firm’s own facilities. To account for these different motives for partner

choice, we asked the firms2 to indicate, for each partnership, the motives that

qualify it as strategically important.

Furthermore, to attribute the observed network dynamics to the influence of the

policy, the actors were explicitly asked, whether the mentioned relations have

existed before 2007 (date of the announcement of the LECC and if they were

initiated or intensified by the cluster initiative). Hence, our analysis relies on the

comparison of the network structure before and after the policy started. We have to

acknowledge that this is only an artificial dynamism since we do not have the

information about the most important R&D partners in 2007, but can only observe a

subset of those that were active at that time, namely those that were still present at

the time of the survey.

18.4 How Policy Influences Cluster Structures

18.4.1 Actor Structures

Describing the actor structures in the four clusters, we distinguish four groups. First,

beneficiaries are those organizations that receive subsidies from the LECC. Second,

those beneficiaries who replied to our survey are the respondents. Third, actors are
all the nodes in the network, i.e. all respondents and all organizations that were

named by the respondents. Fourth, cluster actors refer to those actors that are

members of the respective cluster association. This group encompasses all benefi-

ciaries but also organizations that receive no direct funding.

A first view at the composition of the networks of strategically important R&D

partners in the four clusters (Table 18.1) reveals that the network size as measured

by the number of nodes (actors) varies between 44 (cluster B) and 97 (cluster C).

Some of this variation can be attributed to the different number of respondents,

which ranges from 12 (clusters B and D) to 17 (clusters A and C).

Regarding the regional distribution of actors, it can be seen that the majority is

located within the cluster or national boundaries. Only a small fraction of actors is

located outside Germany, with some differences between the clusters. The consid-

eration of the distribution of linkages exposes an almost similar picture. Most of the

linkages are directed into the cluster region, followed by national linkages. Never-

theless, the clusters display remarkable differences concerning the focus on

intraregional linkages and the embeddedness in international networks. It is

2We did not ask the research institutes since the motives to cooperate differ between the private

and the public sphere.

18 Policy Induced Innovation Networks 341



noticeable that while cluster B seems to find a number of R&D partners interna-

tionally, cluster D is almost exclusively cooperating on a regional and national

scale.

18.4.2 Network Structure and Effects of the Leading-Edge
Cluster Competition

In Table 18.2, structural indicators and their changes in the course of the LECC are

presented; in Fig. 18.3 (Appendix) network visualizations are displayed. To infer on

the effect of the cluster policy, we compare the measures for the network based on

all reported linkages with those for the network consisting only of those linkages

that were present before 2007 (when the LECC was announced).

One of the first important findings from the network analysis is that the policy

has a significant positive impact on the intensity of networking.3 On average, more

than half (52.5 %) of the existing linkages were affected by the LECC in the sense

of initiation or intensification, with a minimum of 42.9 % in cluster C and a

maximum of 65.3 % in cluster A. The majority of these links (35.6 %) was initiated

by the program, indicating a strong impact of the policy measure on networking.

Table 18.1 Composition of the clusters and their networks of strategically important R&D

partners

Cluster A B C D

Beneficiaries: no. of organizations that received a

questionnaire

24 19 33 35

Respondents: no. of organizations that provided information

about their R&D partners

17 12 17 12

Response rate (2)/(1) 71 % 63 % 52 % 34 %

Actors: no. of nodes in the network 61 44 97 48

Cluster actors: no. of nodes that are members of the cluster

association

24 20 41 25

Share of actors located in cluster region 36.1 % 50.0 % 45.4 % 47.9 %

In Germany 50.8 % 20.5 % 37.1 % 47.9 %

In Europe 8.2 % 11.4 % 7.2 % 4.2 %

Outside Europe 4.9 % 18.2 % 10.3 % 0.0 %

Number of linkages 101 43 126 58

Into cluster region 53.5 % 48.8 % 55.6 % 55.2 %

To Germany 38.6 % 20.9 % 31.0 % 41.4 %

To Europe 5.0 % 11.6 % 5.6 % 3.4 %

To outside of Europe 3.0 % 18.6 % 7.9 % 0.0 %

3 Since we cannot observe the whole network in 2007, one could expect that some past linkages

dissolved and the policy effect on the intensity is overestimated. However, being asked about the

change in total number of cooperation partners, 80 % of the beneficiaries reported an increase.
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Accounting only for the linkages among respondents, network density (all active

linkages divided by the number of possible linkages) increased in all four clusters

(on average from 4.9 % to 11.5 %). In cluster C, the increase from 8.1 % to 13.2 %

is the lowest in relative terms, indicating that the cluster was already well connected

before participation. According to face-to-face interviews with some of the actors,

this increase of linkages is mainly a consequence of the increased visibility of

potential partners and synergy potential triggered by the LECC; i.e. the policy

measure mitigates the problem of intermediation within the clusters (Cantner

et al. 2011). Furthermore, new partners entered projects via reputational advice

from already known partners. The newly established contacts were initiated with

the expectation to cooperate in the long run and beyond the own core competences.

Besides this policy effect on the intensity of collaboration between actors, we

also observe a structural change with respect to the concentration of partnerships on

few central actors. Attributable to the public funding, the extent of the centraliza-

tion (based on the indegree) (Freeman 1979) increases in three of the four clusters

and on average from 4.4 % to 8.8 %. This suggests that the newly established ties

are preferentially formed with actors who were already central before the clusters

decided to participate in the LECC.

The clusters exhibit certain differences concerning their interior network struc-

ture. Cluster A and C form in each case a connected network since their network

consists of only one component. That is to say that each actor is directly or

indirectly connected to the network. The remaining clusters display a more fragile

network topology. Moreover, clusters A and D seem to be more concentrated on

few central actors, while cluster B displays a less hierarchical structure. The

average number of connections also shows some differences between the clusters.

In cluster B, the average respondent named 3.6 important cooperation partners

(outdegree) while in cluster C more than twice this number (7.4) was reported. The

mean indegree tells us how often the average actor is being named as a R&D

partner. In cluster B this measure is below one (0.98), indicating that some actors

are not named at all (of course, these can only be respondents). The maximum is

observed in cluster A, in which actors are named 1.66 times on average.

Table 18.2 Structural indicators for each network with and without policy impact

Cluster A B C D Ø

Linkages initiated by cluster program 45.5 % 41.9 % 20.6 % 34.5 % 35.6 %

Linkages intensified by cluster program 19.8 % 11.6 % 22.2 % 13.8 % 16.9 %

Linkages initiated or intensified by cluster program 65.3 % 53.5 % 42.9 % 48.3 % 52.5 %

Density (among respondents) 0.154 0.068 0.132 0.106 0.115

Density (among respondents before 2007) 0.063 0.023 0.081 0.030 0.049

Components (weak) 1 3 1 3

Centralization (indegree) 0.141 0.024 0.081 0.104 0.088

Centralization (before 2007) 0.053 0.034 0.042 0.048 0.044

Mean outdegree (only respondents) 5.941 3.583 7.412 4.833 5.645

Mean indegree (whole network) 1.656 0.977 1.278 1.208 1.304
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In Table 18.3, we report the share of policy initiated (intensified) linkages to

cluster actors in all policy initiated (intensified) linkages. For the induced (intensi-

fied) linkages, these shares range between 67 % and 90 % (65 % and 82 %),

indicating that new cooperations are mainly established among cluster members.

However, these figures also show that the cluster policy also mobilizes partnerships

beyond the cluster boundaries.

In summary we find that the LECC has proven successful in meeting the

objective to foster the networking activities in the regions. The basis for an

intensified and broader knowledge transfer is founded, which may lead to a higher

innovative performance of the system in the future.

18.4.3 Geographic Reach

A clear-cut direction of the policy influence becomes evident when analysing the

geographical reach of the cooperation links. Although certain cluster specificities in

the regional focus of the ties exist (see Table 18.1 and the discussion in

Sect. 18.4.1), the overall picture reveals a strong effect on regional and national

linkages. Table 18.4 compares policy induced linkages with non-induced linkages

for each cluster and in total. In all clusters we observe a significantly higher share of

local linkages for the induced linkages compared to the non-induced links. In most

cases this goes hand in hand with lower shares of linkages at higher geographical

distance. Exceptions are worldwide linkages in cluster A and national linkages in

cluster B. A comparison of the regional distribution of all linkages reveals that

roughly 75 % of induced linkages are local, while only 44 % of non-induced

linkages are local. The majority of the remaining induced linkages are national

with few international linkages being triggered by policy. The shares for the

non-induced linkages to the rest of Germany and to outside Europe are significantly

higher, while the difference for linkages to European partners is large but not

significant.

Consequently, and corresponding to the declared aim of the policy, the LECC

primarily stimulates local connections among actors and affects to a lower extent

the creation of ties on a national and international level. Hence, in a first instance

the LECC is effective in fostering intraregional networks.

Table 18.3 Policy affected linkages to cluster actors (percentages)

A B C D

Share of policy initiated linkages to cluster actors 71.7 66.7 84.6 90.0

Share of policy intensified linkages to cluster actors 65.0 80.0 82.1 75.0
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18.4.4 Science-Industry Interaction

Another important goal of the LECC is to connect industry and science to increase

the speed of transfer of scientific discoveries into marketable products (BMBF

2012). Figure 18.1 shows the shares of all linkages within and between industry and

science in the first bar for each cluster while the respective shares in the second bar

are restricted to the linkages induced by the LECC. In three of the four clusters,

research cooperations between firms and public research dominate. The connec-

tions that were induced by the LECC show a relatively stronger focus on interac-

tions between firms, which is actually quite surprising given the stated goal of the

policy. Across all clusters, 25 % of the non-induced linkages are between firms

compared to 35 % firm-firm linkages among the induced linkages. Accordingly,

linkages among public research as well as linkages between firms and public

research are less frequent among the induced linkages then among the

non-induced partnerships.4 Overall, the differences between clusters imply that

the motives to cooperate with specific partners are to be found in the regional and

technological environment rather than in some (presumed) requirements stated by

the policy maker. At the same time, the policy seems to favour market oriented

research collaborations between firms rather than science-industry interactions.

18.4.5 Relevance of Linkages

To grasp the nature of the existing and newly established links, we asked the

beneficiaries to substantiate the strategic importance of their links according to

the four motives discussed in Sect. 18.3. With respect to cluster specificities in the

motives to cooperate, we observe some generalities but also some notable differ-

ences. The responses are summarized in Fig. 18.2 for each cluster distinguishing

between all partnerships (dark grey) and only those that were initiated by the cluster

policy (light grey). This allows us to identify differences between clusters in their

motivation to cooperate and also gives us the opportunity to observe any systematic

deviations of policy induced linkages from the overall picture.

First of all, access to sources of applied knowledge is, with one exception, the

most important reason for the strategic importance of R&D collaborations. This is

followed by the technical infrastructure that is available with the R&D partners.

The acquisition of basic knowledge is especially important in cluster A, while

complementary capabilities are of high importance in cluster D.

In general, the policy induced linkages are not biased towards any of these

motives. A statistically significant difference only arises for the use of research

infrastructure, which shows to be of lower strategic importance for policy induced

4A Chi-squared test comparing the two distributions shows a significant difference at the 10 %-

level.
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cooperations.5 In cluster B, it seems that the LECC managed to bring together

actors with complementary capabilities and strengthened the exchange of applied
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5 For 53.2 % of the pre-existing partnerships and 38.2 % of the policy-induced partnerships, the use

of research infrastructure was mentioned as a strategic asset. A t-test shows that this difference is

significant at the 5 % level.
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knowledge. In cluster C the acquisition of basic knowledge was reinforced. From an

evaluation perspective, this result reflects the high flexibility of the policy measure

since it is open for various types of partnerships.

18.5 Discussion and Conclusion

Policies aiming at the promotion of clusters are frequently conducted but only

seldom evaluated (Martin and Sunley 2003; Brenner and Schlump 2011). The aim

of this study was to add to our understanding of the effects and mechanisms of

cluster policies by analysing the impact of the German Leading-Edge Cluster

Competition on the underlying network structure. Since the LECC is an on-going

initiative, we could only report intermediate effects on networking within the

funded clusters. By means of Social Network Analysis on the basis of a carefully

constructed questionnaire it was possible to identify effects on the network of

strategically important R&D partners within the clusters that are attributable to

the policy instrument.

Our results show a significant effect on the network structure in terms of density,

centralization and geographical reach. Measures on structural effects in terms of

number (breadth), weight (intensity) and distribution of linkages (centralization)

indicate policy influences already 3 years after starting the funding.

First, on average more than half of the existing linkages were either initiated or

intensified by the LECC with the consequence of an increased density of the

networks. Second, since the majority of these policy-affected linkages are within

the cluster regions, the LECC shifted the focus of collaboration towards local

networking. While such an effect is quite natural for a cluster oriented policy, it

is not to be judged without some scepticism. Experiences of a Japanese cluster

initiative show that local firms have a higher R&D productivity if they collaborate

with partners outside the cluster (Nishimura and Okamuro 2011). Moreover, path-

dependencies for firms and regions which can lead to spatial lock-in in the long run

inhere in the mere search for internal collaborations (Sternberg 2000). These

concerns have also been brought up in the discussion on local buzz and global

pipelines (Bathelt et al. 2004) and have been related to the stage of the cluster

within its life-cycle by Brenner and Schlump (2011). They suggest that a network

renewal by means of increased cluster external linkages is especially important in

more mature phases of cluster development. Since the four clusters analysed in this

paper differ considerably with respect to age or maturity of technology, the dimen-

sion “stage in a cluster life cycle” requires further scrutiny.

A third result is concerned with the distribution of linkages within the networks.

In three out of four cases the network becomes more centralized, i.e. it exhibits a

stronger orientation towards a few, central actors. Interviews with selected benefi-

ciaries in the clusters suggest that this development is rated particularly important

for the integration of SMEs within the cluster. For small firms, which in general

struggle with difficulties to get in contact with large firms, the LECC offers
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opportunities to connect to these; the firm representatives value these contacts of

crucial importance for their long term integration into the network and finally their

innovative performance. However, more centralized networks are also more vul-

nerable, since their dependence on the functioning of single actors is higher as

compared to other network structures. With respect to the rate of knowledge

diffusion, Cowan and Jonard (2004) could show that small world structures are

the superior form of organization. The results of Schilling and Phelps (2007) on the

structure of industry networks add to the difficulties in evaluating this development

towards increased centralization. They find negative effects of network centraliza-

tion on future patenting in the short run but positive effects in the long run.

Fourth, with respect to the interaction between science and industry, we find that

the majority of connections that were affected by policy link firms with universities

or research institutes. However, the LECC does not increase the relative frequency

of science-industry linkages but slightly favours linkages within industry. We

interpret the differential policy impact among the clusters as a sign of flexibility

of the policy measure as it leaves the choices of partnership to the beneficiaries.

With respect to our research design, we have to acknowledge some limitations.

While we can observe cooperations that were established as a consequence of the

LECC, we are unable to make statements about linkages that were present before

the policy started and have become obsolete. We cannot exclude that newly formed

partnerships substituted previous relationships, which would imply that we

overestimate the impact of the LECC on the interaction intensity. However, this

problem is somehow mitigated since additional sources of information indicate an

overall increase in collaboration intensity.

Overall, while we can state that the LECC has met its objective to intensify

collaboration among innovative actors, our intermediate evaluation does not allow

us to infer, that this will lead to a better performance of the selected clusters in the

future. At this stage, we are unable to provide evidence on correlations between the

observed structural changes and the innovative performance of the cluster regions.

Statements in this direction will require a subsequent long term analysis including

comparisons to non-funded clusters.
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Appendix

Cluster A

l

Actor Type
Large firm
SME
University
Research Institute
Unknown

Region
Cluster region
Germany
Europe
World

Cluster B

Cluster C Cluster D

Fig. 18.3 Networks of strategically important R&D partners in clusters A to D. Arrows indicate a

partnership from the respondent to one of the most important R&D partners. Dotted arrows

indicate that the partnership was initiated through participation in the LECC, dashed blue arrows

indicate that the partnership was intensified through the policy, and solid arrows indicate partner-

ships that were not influenced by the policy. Node size is proportional to indegree, i.e. to the

frequency of being named as a partner. The colours and the shapes of the nodes indicate the actor’s

geographic location and type according to the legend.
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Chapter 19

Effects of Competence Centres on Regional

Knowledge Production: An Agent-Based

Simulation of the Vienna Life Sciences

Innovation System

Manuela Korber and Manfred Paier

Abstract Competence centres have gained high recognition as a policy instrument

for improving science-industry collaboration. With the requirement for longer-

term, institutionalized and geographically concentrated R&D, competence centres

provide an environment for joint learning processes and transfer of “sticky” knowl-

edge. They can thus be interpreted as spatially focused R&D networks linking

academia and industry. The objective of this chapter is to investigate in a dynamic

perspective how a public competence centres programme affects knowledge pro-

duction in its environment – the regional innovation system. In order to address this

issue, we draw on a simulation approach and develop an agent-based model of the

Vienna Life Sciences innovation system. Heterogeneous agents representing com-

panies, research organisations and universities are endowed with knowledge and

create output, thus generating system performance in terms of scientific publica-

tions, patents as well as high-tech jobs. Simulations refer to different long-term

scenarios regarding public funds for competence centres. Thus, we explore agent-

based simulation as a potential way to address the complexities of knowledge

interaction in the context of the “local buzz” versus “global pipelines” discussion

in the geography of innovation literature. First results with the empirically cali-

brated model, e.g. on long-term effects, indicate the potential of the approach for

ex-ante impact assessment of network-related measures in R&D policy.

19.1 Introduction

There is broad agreement on the fact that innovation is necessary to achieve and

sustain competitiveness of regions (e.g. Cooke 2002b). In this regard, public

funding for research and development is considered an important contribution to
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secure an effective and efficient regional innovation system, in the recent past

increasingly shifting attention to the support of networking activities and collabo-

rative knowledge production (see also Chap. 18 of this volume by Cantner et al.).

However, evidence on effects of policy instruments supporting regional R&D

networks on a region´s innovative performance is scarce, since the particular effects

are attributable to specific policy interventions only to a very limited extent. The

reason is that interventions in self-organized systems – like regional innovation

systems – trigger effects which are not easily predictable (Fischer and Fröhlich

2001). Small changes in subsystems might affect the overall system in different

ways, ranging from no effect at all to far-reaching system transitions. The research

into self-organized systems investigates phenomena such as non-linearity, path

dependency, bifurcations and emergence. Such phenomena particularly challenge

systematic empirical research on how policy induced R&D networks affect the

performance of regional innovations systems, which is – as described in various

chapters of this volume – on top of the research agenda in economic geography and

regional science.

This chapter focuses on the effects of a specific type of a policy programme

supporting geographically localised networking activities, the Austrian competence

centres programme. Competence centres are institutionalized research ventures that

gather academic and industry partners at a certain location. These are dedicated to

high-level, application-oriented research on a particular topic of broad societal

interest, thus aiming at critical mass and international visibility. This public funding

scheme has a high relevance for the Austrian innovation system and draws on a

considerable budget. All in all, EUR 675 million of public funds are devoted to the

promotion of competence centres in the framework of the COMET1 programme

(The Austrian Research Promotion Agency – FFG 2010, pp. 3–7).

The objective of this chapter is to investigate the effects of competence centres

in a specific sectorial, regional context – the Vienna life sciences innovation system –

on the evolution of knowledge output in the long run. Hereby, we apply agent-based

modelling techniques to explore knowledge production in different long-term

scenarios (30 years) regarding competence centre funding in an empirically cali-

brated model.

The model comprises a set of heterogeneous agents representing companies,

research organisations and universities in the life sciences innovation system. They

are able to create knowledge through own R&D, exchange knowledge with others

through R&D networks and other exchange mechanisms, and produce output using

public and private funding sources. At this point, it is important to mention that

agent-based simulation does not provide forecasts, but gives insights into basic

aspects of different scenarios. Thus, the simulation model can be seen as an

experimental laboratory for testing policy measures ex ante. This has the potential

to improve the current practice of relying mainly on past experience and expert

1 COMET (Competence Centers for Excellent Technologies) programme: funding period from

2008 to 2019.
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knowledge, which is hardly able to avoid bias on individual perceptions and

strategic behaviour.

The chapter is organized as follows: The theoretical foundation of this chapter is

given in Sect. 19.2, which leads to the formulation of hypotheses regarding effects

of competence centres. Section 19.3 is dedicated to the empirical test environment,

i.e. the Vienna life sciences innovation system. The main components of the agent-

based model are described in Sect. 19.4. Then, Sect. 19.5 presents details on the

different simulation scenarios and their respective results. The paper closes with a

discussion of the method, its limitations and an outlook on further research.

19.2 Public Funding of Localised R&D Networks

and Regional Knowledge Production

The importance of R&D cooperation for innovation in regions is well established in

scientific literature (e.g. Castells 2000; Fischer 2006; Chap. 18 of this volume by

Cantner et al.). Regions have been attracting the interest of both scientists and

policymakers as the designated sites of innovation and competitiveness. Numerous

empirical studies have focused on regional clusters, starting with the famous

success story of Silicon Valley (Saxenian 1991). Some clusters prosper, while

others do not – the reasons for that difference in progress are still unclear (Carter

2007, p. 24). Studies on clusters usually draw on the common rationale that

territorial agglomeration provides the best context for an innovation-based global-

izing economy due to localized learning processes and “sticky” knowledge

grounded in social interaction (Asheim and Coenen 2005). It is a general lesson

from research on R&D networks that open and interconnected networks with links

to different knowledge categories foster knowledge diffusion, exploit synergies,

and bridge social closure (Uzzi 1997).

R&D networks provide channels for communication, interaction, and mutual

knowledge exchange inside and beyond the regional boundaries, transcending

sectors as well as industries. They facilitate collective learning and the exploitation

of complementarities on the basis of non-market exchange relations, which are so

important for the generation of novelty (Pyka 2002). Thus, R&D networks are a

prime vehicle to balance regional economic focus, technological specialization and

diversity as sources of the innovative performance of the region and thus of its

economic prosperity (Karlsson et al. 2009).

Competence centres are a special type of policy-induced R&D networks as they

gather academic and industrial partners in a certain location. They support the role

of universities in applied research networks, not only as an important pool for

highly skilled labour (Lambooy 2004; Betts and Lee 2004, p. 2; Graf 2006, p. 40;

Jaffe 1989, p. 957) but also as important partners for small and medium sized

companies (McMillan et al. 2000; Liebeskind et al. 1996). Tacit knowledge can

generally be referred to as a prime reason for cooperation (Fischer 2003, p. 346).
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In this regard, competence centres support innovation by enabling access to implicit

(or tacit) knowledge2 both geographically localized, but also to distant knowledge

via internationally networked partners. Thus, competence centres can be regarded

as public instrument to stimulate the combination of the local buzz versus global

pipelines structure for regional knowledge production (see Chap. 16 of this volume

by Breschi and Lenzi). They may serve as additional levers to accelerate regional

knowledge diffusion by supporting local networking augmented with channels to

tap international knowledge sources, and, by this, foster overall regional innovation

output.

Especially in the life sciences, industrial and academic agents operate in a

dynamic environment characterised by fast-expanding scientific knowledge and

scattered expertise. High development costs are often associated with long time lags

in the commercialization of scientific results (Cooke 2002a). Therefore, agents

operate under high uncertainty, and, in order to keep pace with innovation, they

engage in research cooperation networks (Powell et al. 2005), typically involving

both small dedicated biotechnology firms and large diversified, often transnational,

firms with access to global markets and world class academic institutions. The

demand for tacit knowledge leads the organizations to cluster geographically and to

engage in R&D networks, especially relevant for small dedicated biotech firms

(Korber 2012). We are thus led to expect that (regarding the number of SMEs and

high-tech jobs) the SME sector benefits more from the competence centres
programme than large companies do (Hypothesis 1).

The extraordinary importance of scientific knowledge in the life sciences is to a

large extent associated with high collaboration intensity between academia and

industry. Knowledge spillovers between scientific organizations and companies in

cooperative projects as well as during co-publications are most intense if they are

based on dense and frequent face-to-face contact (Schartinger et al. 2002). Firms

which cooperate with universities are more often involved in basic research, they

have access to higher quality ideas and their invention process is more effective in

general (Fabrizio 2009). We therefore hypothesise that due to close scientific

cooperation of companies and universities, the competence centres programme
strongly favours regional patenting activity (Hypothesis 2).

According to recent research policy, universities are generally required to

increase cooperation with industry partners. In this regard, worries arise regarding

an undesired drift to applied research and, consequently, a decrease in publication

output. On the other hand, empirical evidence has been produced indicating that

researchers that accomplish both patenting and publication activities, are likely to

produce more publications. In fact, even reinforcement effects of both activities

have been observed (Van Looy et al. 2006). Consequently, we expect that the
number of publications in the region rises due to the existence of the competence
centres programme (Hypothesis 3).

2 Tacit knowledge is uncodified, maybe even uncodifiable and varies individually (Fischer 2003,

p. 345).
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19.3 Competence Centres and the Vienna Life Sciences

Innovation System

In the following, we give a brief overview of the life sciences innovation system in

the Vienna region before we turn to the Austrian competence centres programme,

which plays an important role therein. The mid-1980s saw the foundation of a joint

venture of two large international firms,3 which sparked off dynamic activities in

the life sciences sector in Vienna (IMP 2011). By 2011, more than 400 life sciences

companies were located in Vienna, almost a quarter is involved in biotechnology

and medical technology with 9,100 employees, generating about EUR 1.7 billion in

sales (2010). 14,100 persons were employed in academic research for life sciences

(LISAvienna 2011b, pp. 3–7). The Vienna life sciences innovation system is

especially known for medical biotechnology such as oncology, immunology and

neurobiology with expertise in analytical methods and services, diagnostics and

diagnostic technologies, microbiology or pharmaceuticals. Another focus of life

sciences in Vienna that gained momentum recently is the research on medical

technology and devices (Austrian Life Sciences Directory 2009).

From a policy perspective, funding activities specifically dedicated to the life

sciences were rather underdeveloped until the late 1990s. Only in 1999, an Austrian

biotech programme was introduced which has led to the setup of the life sciences

cluster initiative in 2002 (LISAvienna 2011a). Since 2003, the focus of regional

research policy lies on life sciences (WWTF 2011) and in 2004, more than 5 % of

the Austrian public research budget was invested in biotechnology, covering all

parts of the innovation system with a combination of generic and biotech-specific

instruments and a focus on education, research and fiscal policy4 (Reiss et al. 2005,

pp. 74–75).

By 2004, science-industry linkages have been identified as the major weakness

of the Austrian innovation landscape in international comparison (OECD 2004).

First attempts to cope with this issue remained unsuccessful and only the new

Austrian university law provided incentives for universities to engage in coopera-

tive projects with industry partners (Schibany et al. 2013). The development of the

competence centres programmes can be seen as a milestone in this regard, but also

the increased number of thematic programmes made an important contribution. In

this context, it is worth noting, that Austrian research policy in general emphasises

indirect funding, i.e. tax incentives for research. Institutional funding is to a large

extent used by universities, while the number of public non-profit research institutes

is rather low compared with OECD countries. Almost fifty percent of the direct

public funds are directed to cooperative research projects, particularly to compe-

tence centres (Schibany et al. 2009, pp. 73–74).

3 These companies were Boehringer Ingelheim and Genentech.
4 Reiss et al. (2005, pp. 74–75) used historical data (1994–2002) on policy activities and national

performance in biotechnology and benchmarked data regarding biotech policies in the year 2004.
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Meanwhile, Austria’s culture of cooperation is of high renown worldwide. A

broad range of different public funding instruments aims at the promotion of

science-industry relations, thus supporting the fast commercialization of scientific

findings. Especially, the enlargement of technology and structural programmes

since the 1990s has been important in this regard, and competence centres and

networks are among the most prominent and successful examples of these funding

measures. Companies play an essential role in knowledge and technology transfer,

this is reflected even in a strong and sustainable increase in national R&D expen-

ditures and provoked by an increasing number of researching firms and their

respective research intensity (Schibany et al. 2009, p. 81).

The Austrian competence centres programme aims at improving science-

industry collaboration, the efficiency of industrial research and at building up

human capital through a temporary boost of research endeavours. In its current

make, the Austrian competence centres programme, COMET, comprises three

different types of activities with increasing size, resource endowments and dura-

tion: The K-Projects, K1- and K2-Centres (The Austrian Research Promotion

Agency – FFG 2010). In K-Projects, running for 3–5 years, participation of at

least one academic and three industrial partners is required. These projects are one

million EUR per year in maximum size and offer up to 45 % public subsidy.

K1-Centres support science-industry collaboration of at least one academic and

five industrial partners. For a 7-year period, a maximum annual budget of 1.5

million EUR is foreseen with up to 50 % public support. Compared with this, the

K2-Centres are the largest and most challenging scientific endeavours: With at least

one academic and five industrial partners, a K2-Centre obtains up to 55 % support

over a 10-year period, with a maximum of five million EUR per year. Hereby,

international significance and visibility of the research is demanded. As of 2012,

about 25K-Projects, 16K1-Centres, and five K2-Centres have been funded through

the Austrian competence centres programme (The Austrian Research Promotion

Agency – FFG 2010).

A recent ex-post evaluation of the Austrian competence centres programme

hints at the remarkable increase in science-industry relations in Austria beginning

from the late 1990s (Schibany et al. 2013). However, the study is quite frank about

the potential contribution of the competence centres programme to the performance

of the innovation system: The respective shares are less than 2 % of total public and

0.9 % of total private expenditures on R&D, which puts the role of the competence

centres programme, at least in terms of financial contribution, into perspective.

Nevertheless, the evaluation concedes a structuring effect on public funding and on

intensifying collaboration between industry and academia. A core question that

remains from this evaluation project is, what would be the right level of public
investment, so that an effect of the competence centres programme could emerge on

the system level. This issue can obviously not be addressed by standard evaluation

since there is no counterfactual history. This is where our agent-based simulation

comes in, and is able to contribute to the discussion by exploring different scenarios

in the given innovation system.
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19.4 The Model

In our modelling approach, we seek to estimate effects of regional networking

induced by competence centres on the innovative performance of the Vienna life

sciences innovation system. Building on the SKIN model – Simulating Knowledge

Dynamics in Innovation Networks (Pyka and Saviotti 2002; Ahrweiler et al. 2004;

Gilbert et al. 2001), we develop an empirically guided, case-specific agent-based

model to address this question. In this model, companies, universities, public

research and other relevant research organizations are treated as heterogeneous

agents that make investment decisions about conducting research, exchange assets

with other regional and external agents and produce innovative output.

Referring to the particular empirical case of the life sciences sector in Vienna

(Austria), we investigate the long-term impact of a competence centres programme,

as a more institutionalized form of regional science-industry cooperation, on

innovative behaviour and knowledge-related output. Hereby, we view the life

sciences sector as a localised, sectoral innovation system (Malerba 2002) and

focus on the performance of both the organisations and the innovation system as

a whole. In the model, firms, universities, public and private research organisations

are heterogeneous agents with individual research strategies that are able to create

innovative output.

The model specification used here (Fig. 19.1) builds on an existing agent-based

model of the life sciences innovation system in Vienna (Korber 2012). Innovative

output is modelled as an evolutionary process of generating and recombining

knowledge assets among organizations. The model consists of three basic elements:

First, the input side is represented by different kinds of Financial Resources,
both Private Funds and Public Funds, enabling and triggering the agents’ research

activities. Private funds include market revenues, private equity, initial public

offerings, bank credits and venture capital. Public funds in the general model

include direct funds, both bottom-up (initiated by the organisation) and top-down

(initiated by government) as well as indirect funding (tax incentives), and institu-

tional funding (for universities and public research organisations).

Second, the Vienna Life Sciences Innovation System itself – representing the

core element of the model – comprises companies, private and public research

organizations, universities, universities of applied sciences and government agen-

cies. Organizations are characterized by individual knowledge endowments and are

able to invest in isolated as well as collaborative research activities. In effect, the

use of public funds reduces the costs of research for organizations. The Knowledge
Interactions therein include collaborative research, labour mobility, teaching and

lectures, creation of start-ups and spin-offs, licensing, consulting and contract

research, as well as extra-regional relations.

The third part of the model describes the Output side of the system, focusing on

performance in terms the number of scientific publications, patents and high-tech
jobs. Agents produce individual or joint research results, which undergo an
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evaluation process using fitness functions (see Korber 2012 for details). Accord-

ingly, a research result of sufficient fitness is attributed the status of a scientific
publication or a patent, depending on the dominant orientation of the consortium

towards science or industry. Following a positive evaluation, this output feeds back

on the involved organizations in terms of an enhanced knowledge endowment and

modified attributes, e.g. increased financial stock. Repeatedly unsuccessful organi-

zations deplete their financial resources or forget their knowledge and finally exit

the system.

For the purpose of our research interest, we focus on the Austrian competence

centres programme COMET as additional element of the input side. Hereby, we

include the three classes of competence centres differing in terms of duration and

size (K, K1 and K2) as described in the previous section. Consortia with industry,

university and research organizations can apply for a competence centre. The award

of a competence centre grant depends mainly on the consortium composition in

terms of the share of science and industry partners and on the quality of proposed

research.

19.5 Simulation and Results

In our simulation approach, we focus on the long-term effect of the competence

centres programme on selected output indicators in the Vienna life sciences inno-

vation system. Thus, we aim at discerning the impact of this specific policy measure

against the background of a larger set of public and private funds in the innovation

system. The model was implemented in NetLogo (Wilensky 1999) and calibrated

with empirical data on organizational characteristics and public funds from 1999 to

Private Funds
• Market revenues
• Initial public offerings
• Venture capital

OutputVienna Life Sciences 
Innovation System

Knowledge Interactions
• Collaborative research
• Labour mobility
• Teaching and lectures
• Creation of start-ups and spin-offs
• Licensing
• Consulting and contract research

Financial
Resources

IndustryResearch 
Org. University 

Patents

Publications

High-Tech Jobs

Public Funds
• Direct 

(Bottom-up, Top-down)

• Tax incentives
• Institutional
• Competence centres
• (Pre)Seed funds

Fig. 19.1 The agent-based model
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2010.5 Simulations are based on a standard portfolio of research funds from private

and public sources as displayed in Fig. 19.1. The additional effect of funding for

competence centres is explored using three different scenarios (see Table 19.1).

The Reference scenario represents the perpetuation of the empirical calibration

period, comprising the standard portfolio of financial resources from Fig. 19.1

including the competence centres programme. The Termination scenario is char-

acterized by the standard portfolio with the competence centres programme termi-

nated after 15 years, while the Alternative scenario denotes the standard portfolio

without competence centre funding. At this point, we assume that the availability of

competence centre funding is not restricted exogenously, i.e., all consortia that pass

the quality evaluation are funded. As a consequence, total demanded public funds

emerge endogenously on the input side and are on an increasing path. This idealistic

assumption is adopted in order to explore the critical size of a competence centres

programme – an issue that was also discussed in the recent evaluation of the

competence centres programme in Austria (Schibany et al. 2013, p. 7).

On the input side, the three scenarios differ with respect to the total annual

amount of public funds granted (Fig. 19.2). Obviously, the Reference scenario is the

most expensive one in terms of required public funds. On the other hand, we

observe that in the Termination scenario funding does not completely descend to

the level of the Alternative scenario after the competence centre programme is

discontinued. This result might indicate that the competence centres programme

has improved the ability of the agents to define high-quality projects, e.g. through

newly combined knowledge assets or higher expertise levels. As compared with the

Alternative scenario, the system exhibits some memory effect, and alternative

public funds can be exploited to a greater extent.

On the output side, we refer to the three hypotheses formulated in Sect. 19.2.

Generally speaking, the Alternative scenario reflects an increase of the overall

population that results from the basic model specification and the given empirical

Table 19.1 The simulation scenarios at a glance

Scenarios Implemented policy measures Legend

Reference

scenario

Competence centres programme, Direct funding,
Indirect funding, Institutional funding, (Pre)

Seed funding

Competence centres

programme (perpetuated)

Termination

scenario

Competence centres programme (Year 1–15),
Direct funding, Indirect funding, Institutional

funding, (Pre)Seed funding

Competence centres

programme (terminated

after 15 years)

Alternative

scenario

Direct funding, Indirect funding, Institutional

funding, (Pre)Seed funding

No competence centres

5 Agent population at the setup comprises 75 organizations as given by the database on life

sciences in the Vienna region. Detailed parameter settings including reference to the data sources

are provided in Tables 19.2, 19.3, 19.4 and 19.5 in the Appendix. Simulations were run for

120 time steps (four time steps per year), representing an observation period of 30 years. All

diagrams show mean values over ten simulation runs.
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calibration. While this model feature can be discussed per se, the Alternative

scenario nevertheless offers a baseline for comparison with the other two scenarios.

Hypothesis 1 states that the SME sector benefits more from the competence

centres programme than large firms do. In the simulation, agent demographics

reveal quite different evolution for different agent types (Fig. 19.3). All three

scenarios are characterized by a positive evolution of small and medium sized

enterprises, but only in the long run. Especially in the Reference scenario with

continuous funding for competence centres, the SME sector benefits regarding the

number of firms. This may result from reduced bankruptcy exits, but also from

competitive advantages due to greater heterogeneity of the knowledge pool. To a

lesser extent, research organizations exhibit a positive effect from competence

centres in terms of agent numbers. In comparison, the large enterprise and the

university sectors do not exhibit increased growth rates. Moreover, the number of

high-tech jobs (Fig. 19.4) shows a considerable impact from the competence

centres programme, which is also partly due to the growing number of SMEs in

the system. Thus, Hypothesis 1 is supported by the model, stating that competence

centres have a positive long-term impact on the size of the SME sector, while the

large enterprise sector is weakly affected.

Hypothesis 2 refers to the ability of competence centres to boost patenting

activity in the region. Regarding the number of patents, the model produces

differing evolutionary paths in each of the scenarios (Fig. 19.4a). While the

Alternative scenario (standard portfolio without competence centres) exhibits a

moderate growth, the Reference scenario with competence centres leads to a

considerable increase in patenting. In the Termination scenario, patenting returns

to the slower pace of the Alternative scenario quickly, when competence centre

funding stops (after 15 years). Again, a memory effect can be identified. The model

thus predicts that competence centres have an impact on patenting activities

especially in the long run.

Hypothesis 3 is related to the ability of competence centres to increase scientific

publication activity in the region. Simulation results reveal little difference between

the three scenarios in this respect (Fig. 19.4b). This means that competence centres

in the model do not evoke large amounts of additional scientific output. This may be
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attributable to the design of the competence centres that foresees a smaller share of

academic partners in the consortia, and sees academic partners primarily as sources

of knowledge. What is interesting, though, is the fact that in the Termination

scenario, scientific publications show almost no downturn after discontinuation of

the competence centres programme and remain sustainably at the pace of the

Reference scenario.
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19.6 Summary and Concluding Remarks

In this chapter, we have presented an agent-based model of the Vienna life sciences

innovation system, and have simulated long-term effects of a competence centres

programme – regarded as a policy induced realisation of geographically localised

R&D networks – on regional knowledge production. Our explorative study intends

to suggest potential ways how agent-based models could shed light on the debate in

theoretical and empirical literature how policy induced local and global networking

may affect the innovative performance of regional innovation systems.

In a policy context, such simulation approaches show the potential to support the

ex-ante impact assessment of intended policy measures, such as the competence

centre programme. Several of the existing competence centres in Austria are in the

life sciences field; current programme evaluations have triggered lively debates

about their impact. Facing the vagueness of empirical evidence and the open issue

of learning from ex-post evaluations, we adopt an ex-ante perspective and use

agent-based simulation for experimenting with alternative scenarios. Our study

explores potential effects of competence centres on selected output indicators,

namely scientific publications, patents and high-tech jobs by comparing three

different scenarios: (i) A Reference scenario, where competence centres are con-

tinuously funded for 30 years, (ii) a Termination scenario, where funds for compe-

tence centres are terminated after 15 years and (iii) an Alternative scenario, where

no competence centres exist at all.

The model shows that small and medium sized enterprises benefit more than all

other agent types from the competence centres programme. This is represented by a

continuous increase referring to the number of small and medium sized enterprises

in the agent population during the Reference scenario, particularly in the long run.

We assume this is due to an augmented heterogeneity in the joint knowledge pool

and to a reduced number of SMEs that have to exit the system due to bankruptcy.

The simulation results show only minimal effects of competence centres on the

large enterprise sector.

Regarding patenting activities in a region, we find a strong growth of the number

of patents during the last 15 years of the Reference scenario, where competence

centres are funded throughout the whole 30-years-period. A memory effect is

observed, i.e. if funding is stopped after 15 years agents are still able to benefit

from raised expertise levels and thus patent and publish more than if competence

centres have never existed. Referring to the publication activity of the agents in the

region, the simulation results of the three scenarios reveal only very little differ-

ences. In contrast, simulated scientific output is not deeply impacted by the com-

petence centres programme. We presume that this lies in the requirement of

competence centres to include a smaller share of academic partners that serve

mainly as a source of knowledge.

In terms of the literature investigating the geography of R&D networks, the

results seem to confirm findings in related empirical works (see, e.g., Chap. 16 of

this volume by Breschi and Lenzi) that support the complementary character of

local and global networking as central factor for regional innovative performance.
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Competence centres can be seen as important policy induced platform to stimulate

such a combination of local and global networking activities. The results point to

long-term effects in terms of learning and improved innovative performance of

industry, especially the SME sector. Competence centres may indeed facilitate

science-industry collaboration and commercialization of scientific results, espe-

cially in the long run, through institutionalized and long-term R&D networks

concentrated in space.

It has to be admitted that the general limitations of the present approach are at

least twofold. First, the trade-off between an account of the complexity of the

innovation system on the one hand and the quest for analytic clarity and simplicity

on the other, will limit the prediction capability of policy-related agent-based

models in quantitative terms. Although agent-based modelling gains ground in

social sciences and economics, the question regarding when we can consider a

model as reliable – and empirically validated – is still not fully solved. Second,

accounting for novelty in the presented knowledge generation model is restricted to

re-combinations of existing knowledge endowments, which may limit the coverage

of radical innovation. Evaluating the quality of the produced knowledge without

reference to semantics, remains another fundamental challenge, which we have

addressed by using fitness functions.

Future research will introduce statistical analysis for interpretation of the simu-

lation results, and explore alternative fitness functions that are used for evaluating

the simulated knowledge outputs. With regard to the spatial dimension of the

model, a more explicit account of extra-regional R&D networks needs to be

considered. Moreover, other sectors with different knowledge production regimes

like machinery, information and communication technology, energy and others will

help to endorse our methodological approach. Hereby, the relevance of the simu-

lation results will be improved by involving policymakers, thus relying on the

companion-modelling approach (Barreteau et al. 2003), also referred to as expert

validation.
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Appendix

The presented model is programmed with NetLogo, version 5.0.3 (Wilensky 1999).

The program code for the NetLogo model on which this chapter is based is available

from the authors on request. The simulation runs described in Sect. 19.5 are based

on the parameter settings given in Tables 19.2, 19.3, 19.4 and 19.5.
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Table 19.2 Agent parameter settings (all three scenarios)

Parameter Value

Initial agent

population

75 agents: agent number and structure according to life sciences organisations

in the Vienna region as per 1999 (Austrian Life Sciences Directory 2011)

Organization type Industry (SME, LE), University (university, university of applied sciences),

Research organization (public, private): according to life sciences orga-

nisations in the Vienna region as per 1999 (Austrian Life Sciences

Directory 2011), Aurelia (Bureau van Dijk 2010), organisation (business

reports, web pages, etc.)

Differentiated org.

type

Research fields Calibrated according to life sciences organisations in the Vienna region as per

1999 (Austrian Life Sciences Directory 2011), complemented by own

inquiry

Core

competencies

Calibrated according to life sciences organisations in the Vienna region as per

1999 (Austrian Life Sciences Directory 2011), complemented by own

inquiry

Expertise level Uniform random distribution from 0 to 9

Financial stock According to yearly turnover or budget of particular organisations (Austrian

Federal Ministry for Science and Research 2008, p. 62; Bureau van Dijk

2010), organisation (business reports, web pages, etc.)

Employees Austrian Life Sciences Directory (2011), Aurelia (Bureau van Dijk 2010),

organisation (business reports, web pages, etc.), complemented by own

inquiry

Researchers Austrian Life Sciences Directory (2011), Aurelia (Bureau van Dijk 2010),

organisation (business reports, web pages, etc.), complemented by own

inquiry

Foundation year Austrian Life Sciences Directory (2011), Aurelia (Bureau van Dijk 2010),

organisation (business reports, web pages, etc.), complemented by own

inquiry

Research

orientation

No research, Basic research, Applied research (Austrian Life Sciences

Directory 2011), Aurelia (Bureau van Dijk 2010), organisation (business

reports, web pages, etc.), complemented by own inquiry

Share of agents 67 % incremental research attitude

34 % go-it-alone research strategy (perform own research)

49 % conservative partner search strategy

58 % imitative collaboration strategy (during cooperation)
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Table 19.3 System parameter settings and empirical calibration (all three scenarios, per quarter)

Parameter Value

Random seeds 20, 25, 30, 40, 45, 65, 70, 75, 80, 90

Receipts and
expenditures

Costs of own

research

Research organization agents EUR 100,207 multiplied by

total no. of researchers of

the agent

University agents EUR 32,702 multiplied by

total no. of researchers of

the agent

Research expenses scientific sector and

number of employees 2007 (Schibany

et al. 2010, p. 143 and p. 149)

Industry agents

Total no. of employees <50, per quarter EUR 25,543 multiplied by

total no. of researchers of

the agent

Total no. of employees 50–249, per quarter EUR 44,220 multiplied by

total no. of researchers of

the agent

Total no. of employees �250, per quarter EUR 43,250 multiplied by

total no. of researchers of

the agent

Research expenses business sector and num-

ber of employees 2007 (Schibany

et al. 2010, p. 140)

Costs of coopera-

tive research

per partner

Uniform random distribution from EUR 0–15,000

Labour mobility Probability of 3 %

Royalties Uniform random distribution from EUR 0–600,000

Remuneration for

consulting

projects

Uniform random distribution from EUR 0–60,000

Remuneration for

contract

research

Uniform random distribution from EUR 0–60,000

Remuneration for

extra-regional

relations

Uniform random distribution from EUR 0–10,000

Private equity Uniform random distribution from EUR 0–25,000

Probability per quarter of (Schibany

et al. 2010, p. 141)

5 %

Bank credit Uniform random distribution from EUR 0–100,000

Initial financial

stock of start-

ups

SME: Uniform random distribution from EUR 0–70,000

minimum nominal capital for Austrian

GmbH: EUR 35,000 (GmbHG 2012)

LE: Uniform random distribution from EUR 0–100,000

(continued)
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Table 19.3 (continued)

Parameter Value

minimum share capital for Austrian AG:

EUR 50,000 (AktG Aktiengesetz 1965)

University: Uniform random distribution

from

EUR 0–20,000

Research org.: Uniform random distribution

from

EUR 0–20,000

Revenue per sold

innovation

Uniform random distribution from EUR 0–100,000

Venture capital Venture capital is limited to investment in seed, start-up, early development

and expansion stages. Later stage replacement and buy-out investments

are excluded. Venture capital investment data for the life sciences for

2007, Average size per investment per year: USD 791,600: as of 20 Jan-

uary 2012: EUR 611,524 (OECD 2009, p. 96 and p. 101)

Cash flow from

issued shares

EUR 100,000

SMEs go public Probability of 0.1875 % (Schibany et al. 2010, p. 141)

Table 19.4 Switches to

determine the agents’ option

for action (all three scenarios)

Parameter Parameter settings

Private funds

Market revenues ON

Private equity ON

Initial public offering ON

Bank credits ON

Venture capital ON

Knowledge interactions

Collaborative research ON

Labour mobility ON

Teaching and lectures ON

Creation of start-ups and spin-offs ON

Licensing ON

Consulting and contract research ON

Extra-regional relations ON

Agent exits

Exit due to bankruptcy ON

Exit because expertise is forgotten ON
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Epilogue



Chapter 20

Synopsis and Outlook

Thomas Scherngell

20.1 Placement of the Volume in the Literature

and Contribution

R&D Networks and collaborative knowledge production have attracted increasing

attention in the recent past, both in the scientific realm and in the policy sector.

They can be characterised as organisational forms supporting knowledge produc-

tion and diffusion processes by allowing participating actors to get access to new

knowledge more rapidly, to learn from each other and to explore and exploit

synergies. Today it is widely agreed that such networks play a crucial role in

developing and integrating new knowledge in the innovation process, and, thus,

have a profound impact on the innovative and economic competitiveness of firms,

regions and countries.

Spatial studies of innovation have also increasingly shifted attention to the

exploratory and explanatory investigation of the spatial dimension of networks.

One of the fundamental questions raised by the theoretical and empirical research

concerns the analysis of the complex relationships between R&D networks and

geography, as well as the interdependence of network dynamics, spatial economic

development and the innovative behaviour of organisations (see, for instance,

Autant-Bernard et al. 2007). This recent focus on the geography of R&D networks

has made clear the need for methodological advancements in the domain of spatial

econometrics and spatial statistics, on the one hand, and, on the other hand, in

applying and adjusting methods originally introduced in other disciplines for spatial

network analyses.

From a historical perspective, networks – formally and far more generally

defined as a set of nodes inter-linked by a set of edges – have long been a subject
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of research in different disciplines. Barthelemy (2011) considers two main research

threads – showing distinct disciplinary roots – that are now increasingly coming

closer to each other for the spatial analysis of networks in general. The first one

broadly covers the realm of Complex Network Analysis (CNA) and Social Network

Analysis (SNA), comprising a set of tools stemming from graph theory. In this

context, mathematics, mathematical sociology, physics and computer science have

initially focused on random networks, starting with the seminal work of Erdös and

Rényi (1959) on random graph models. In the 1990s, structures and dynamics of

real-world networks have come into focus; Watts and Strogatz (1998) observe real-

world network properties to propose new models of random networks. This has

been the starting point for investigations of structure and dynamics of all kinds of

real-world networks, and the development of a significant number of software tools

for network analysis. However, spatial aspects of such networks have usually been

touched on only rudimentarily.

The second research stream originates from quantitative geography where struc-

ture and drivers of interactions between discrete spatial entities, such as commodity

or transportation flows, have been studied since the 1970s. Haggett and Chorle

(1969) discuss the role of geographical space for network formation and describe

tools and models to characterise such networks. These are similar questions that are

nowadays relevant in the context of the spatial analysis of R&D networks that –

driven by the focus on the Geography of Innovation (Feldman 1994) – have drawn

attention in spatial studies of innovation in the recent past due to recognition of the

important role of networks for generating successful innovation (see, for instance,

Bergman 2009; Scherngell and Barber 2009).

A great deal of theoretical and empirical research has investigated the spatial

dimension of R&D networks over the past decade. The growing research activities

in this direction are also related to the increasing availability of datasets and

computer capabilities for the analysis of large-scale networks featuring a large

number of nodes and links. Today, we have both the tools and the computing

capacity to investigate such large-scale networks, including geo-referencing of

nodes and edges. However, in methodological terms, studies that investigate spatial

structures of R&D networks greatly differ (see also Chap. 2 by Autant-Bernard and

Hazir). Also a variety of conceptual approaches to interpreting results from spatial

analyses of R&D networks can be identified in these different works. There remains

a need for integrating and comparing different methodologies and underlying

conceptual models to be used for addressing research questions that are both on

the scientific and on the policy agendas.

The present volume – as a joint product of scholars analysing the geography of

R&D networks from different angles, from distinct disciplinary backgrounds, using

a diverse set of methodologies and producing a range of policy conclusions in

diverse spatial and sectoral environments – clearly addresses this research gap in a

quite significant and fruitful way. It constitutes – on the one hand – a unique

collection of articles presenting methodological advancements for the analysis of

R&D networks from different disciplines, and – on the other hand – a distinguished

anthology of novel empirical contributions on the relationship between geography
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and network structures as well as the impact of such networks on knowledge

creation and innovative performance of firms, regions or countries.

In line with the three parts of the book, the main findings may be categorised

into, first, methodological advances for spatial studies of R&D networks; second,
novel empirical insights into spatial R&D network structures; and, third, the impact

of R&D network structures and dynamics on knowledge creation and diffusion in a

Science, Technology and Innovation (STI) policy context. The first category clearly

contributes to integrating and combining methods originating from different

disciplines—such as mathematics, computer science or complex systems

science—with more traditional spatial analysis methods from geography and

regional science. The second and third category is realised by a selection of new

empirical works employing cutting-edge methods – some of them presented in this

book in an abstract manner – and using novel, systematic datasets on different types

of R&D networks at different spatial, sectoral or technological scales. These novel

empirical insights significantly contribute to the theoretical debate in the Geogra-

phy of Innovation literature, such as, for instance, the debate on the interplay

between geographically localised and geographically dispersed knowledge flows

for regional knowledge creation (see Feldman and Kogler 2010).

In this synopsis, a sketch of the main findings is presented in the following,

distinguishing between the methodological and the empirical realm. After that, the

section closes with some ideas – derived from the different chapters – for a future

research agenda.

20.2 Main Methodological Findings

From the articles gathered in Part II of the volume, we have learnt that methods

from CNA and SNA, rooted in graph theory, provide promising and powerful tools

that complement traditional spatial analysis methods for spatial studies of R&D

networks (for an overview see Chaps. 2 and 3 of the volume). The methodological

and analytical approaches usually rely on different conceptual views on how and

under which conditions networks are formed. While in CNA, real-world networks

are usually considered as one potential realisation of a random graph, game

theoretical approaches consider networks as equilibrium of choices or utilities of

participating individuals (see Chap. 2). Common analysis tools to study the geog-

raphy of R&D networks, such as spatial interaction models, take up both views.

They relate observed interaction intensities within a network to different influential

factors, including origin-specific, destination-specific and (spatial) separation vari-

ables, such as geographical distance, and some notion of randomness (see Chap. 2);

in newer approaches spatial interaction models also take into account the issue of

spatial dependence among flows, referred to as network autocorrelation (see

Chaps. 6 and 8). Thus, from a network analytic perspective, they focus on factors

at the node and the dyad level (see Chap. 4). However, such approaches often

neglect the structural network level referring to the influence of indirect linking
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structures on tie formation, as for instance, preferential attachment mechanisms.

Exponential random graph modelling (ERGM) is presented as a promising meth-

odological approach to analyse the geography of R&D networks, actually taking

into account the structural network dimension and its effects on network formation

(see Chaps. 2, 4 and 12 for an overview and illustrative applications). ERGM are

stochastic models viewing an observed network with a fixed number of nodes as a

specific realisation of multiple hypothetical networks with similar properties (see

Chap. 4). In analysing the geography of R&D networks, an ERGM can explain the

formation of a network by means of regular, local network patterns. Among the set

of possible network configurations, higher probability is given to those that are

similar to the observed network in terms of these local structures (see Chap. 2).

Another crucial issue in analysing the geography of R&D networks is the

identification of so-called communities in networks, roughly defined as

sub-networks whose members are more tightly linked to one another than to other

members of the network. The volume comprehensively discusses community

detection approaches (see Chap. 3) and presents an application to project-based

European R&D networks (see Chap. 9). Community detection provides a promising

pathway to describing the structural organisation of R&D networks with respect to

the existence of relevant substructures that may exert influence on the spatial

structure of the whole network. While initially only available for unweighted

networks, newer methods in community detection are able to take into account

weighted networks that are often more intuitive for describing and analysing R&D

collaboration networks (see Chap. 3).

An additional methodological finding of the volume lies in the discussion of

SNA related techniques for the analysis of spatial aspects of R&D collaboration

networks (see Chaps. 5, 7, 13, 15, 16, and 18). In this context, the volume

significantly contributes to the recent debate in economic geography and regional

science on the usage of SNA techniques for the spatial analysis of different kinds of

complex systems, such as R&D networks (Bergman 2009; Ter Wal and Boschma

2009). To gain deeper understanding of R&D network formation mechanisms, a

critical point concerns the value of knowledge that is made available to an inno-

vating actor when gaining a specific network position. A new measure presented in

this volume (see Chap. 5), labelled Ego Network Quality (ENQ) index, constitutes a

promising approach for investigations in this direction. The measure is intended to

capture the value of knowledge available from a node’s position in a given network

taking into account different structural network dimensions in form of direct and

indirect contacts, and – at the same time – accounts for individual characteristics of

the nodes in these neighbourhoods. The intrinsic innovation of the measure is that it

represents an integrated measure of network position and node characteristics.

However, at the global network level, aspects such as assortativity and hierarchy

may play an essential role for explaining the geography of R&D networks that

cannot be captured by this index in its present form. Two SNA-related measures,

degree distribution and degree correlation, are discussed as promising ways to

highlight certain structural network properties that affect the performance of geo-

graphically localised R&D networks (see Chap. 7). The degree distribution is
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interpreted as a measure for the degree of hierarchy in the R&D network under

consideration, while the degree correlation serves as a proxy for the level of

assortativity, i.e. the propensity of knowledge to flow between more central and

more peripheral actors.

Reviewing the methodological findings, the contribution of the articles in this

volume is substantial. They outline the potential for integrating and combining

methods from different disciplines, and for applying these methods to address

prominent research questions. ERGM has been raised as a reasonable pathway for

analysing the relationship between network structure and R&D collaboration inten-

sities in geographical space, while SNA-related measures have been proposed to

better understand the spatial structure of R&D networks at the global and the local

level. Concerning more traditional spatial interaction modelling approaches –

which are without doubt still a powerful instrument to describe the geography of

R&D networks – new statistical approaches to deal with spatial dependence issues

among network links have been discussed and applied.

20.3 Main Empirical Findings and Policy Implications

Besides the methodological contributions described above, the volume includes an

extensive selection of empirical works on the geography of R&D networks and

collaborations, using cutting-edge methodologies – some of them discussed in an

abstract manner in Part II of the volume – and new, systematic datasets on different

types of R&D networks at different spatial and sectoral scales. These articles

significantly advance theoretical considerations on the geography of R&D networks

as well as relevant conclusions in a STI policy context.

At the European level, significant efforts have been devoted to the creation of an

European Research Area (ERA), an attempt to overcome fragmentation in Euro-

pean research systems (see Chap. 14). From this perspective, the analysis of the

spatio-temporal evolution of R&D networks is of great relevance. The articles

presented in Part III of the volume contribute to this research direction in many

different aspects. From a longitudinal perspective, Chap. 8 is one of the first

contributions providing evidence on integration processes in two distinct European

R&D networks over the time period 1999–2006. Using Poisson spatial interaction

models accounting for spatial dependence among network links, the results show

that the geographical dynamics of progress towards greater integration is higher in

policy-induced networks within the European Framework Programmes (FPs) than

in co-patenting networks. But such results may differ significantly across different

technological domains, as evidenced by the differing spatial structure of themati-

cally homogenous communities identified in FP networks (Chap. 9). It is shown that

the degree and evolution of integration may differ across technological areas and

that specific technological characteristics should be considered when assessing

progress towards ERA. While these comparative contributions are both compelling

and politically informative, it seems essential to monitor and evaluate the
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geographical effects of ERA policy efforts in future studies (see Chap. 14), in

particular putting emphasis on the interplay between the policy goal to decrease

fragmentation of research systems, on the one hand, and the policy goal to increase

and sustain research excellence, on the other hand.

To some extent, the volume provides some indications that these goals are not

necessarily contradictory (see Chap. 17), showing a joint positive effect of agglom-

eration and networking – proxied by participation in the FPs – on regional knowl-

edge production at the level of European NUTS-2 regions. Results of a panel

version of the Spatial Durbin Model (SDM) confirm the prevalence of agglomer-

ation effects for regional knowledge production, and, by this, the importance of

co-location of ‘excellent’ actors in terms of innovation capability. However, the

study also produces statistical evidence that inter-regional R&D networks in the

FPs significantly contribute to regional knowledge production. In this way, lagging

regions may indeed increase their innovation capability by participating in FP

networks.

Concerning the geography of R&D networks constituted under the FPs, the

volume also provides relevant insights at the organisational level and in different

technological domains. In terms of inter-organisational R&D collaboration, it is

shown that crossing national borders indeed shows a significantly positive rather

than negative effect on scientific knowledge generation, measured in terms of

reported co-publication activities resulting from FP projects (see Chap. 11). This

corresponds to related findings at the regional level, showing that region-pairs

located in different countries significantly produce more co-publications after

they have jointly participated in the FPs with organisations located in these regions

(see Hoekman et al. 2013). However, it must be taken into account that different

kinds of knowledge prevalent at specific stages of technological development

influences the geographical and structural organisation of networking in a specific

technological field. This is demonstrated for FP networks in the field of Global

Navigation Satellite Systems (GNSS) (see Chap. 13), also showing that the viability

of a technological field might depend on the existence of a cohesive network

involving geographically dispersed and distant organisations.

In addition, the involvement of different types of organisations, mainly

distinguishing between universities and firms, produces different (spatial) network

structures. For the case of multi-lateral collaborations in the biotechnology field

(see Chap. 12), it is shown – using ERGM methods – how different types of

organisations behave in terms of connectivity, and how they form collaborative

arrangements. The results suggest that universities and research organisations tend

to participate in more consortiums than firms, and, by this, constitute important

bridges for inter-consortium learning.

The importance of these aspects of network structural characteristics for knowl-

edge diffusion raises the question of which factors influence network position. At

the regional level, the volume provides evidence – employing a spatial econometric

perspective in form of a SDM relationship – that financial R&D resources, human

capital and the level of socio-economic development are important general deter-

minants of a region’s network positioning in different thematic fields, including
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Information and Communication Technologies, Sustainable Development and Life

Sciences (see Chap. 15). This implies important conclusions in terms of priority

setting in a regional innovation policy context.

The volume significantly contributes to the debate on the local buzz versus

global pipelines nature of knowledge creation, providing evidence that knowledge

located further away in geographical space becomes increasingly important for

regional knowledge production. This idea is further investigated in relation to the

inventive productivity of US cities (see Chap. 16). The indicators developed in this

chapter capture the propensity of US cities to engage not only in local networking

(local buzz) but, more importantly, to entertain knowledge exchanges with actors

located in other places (global pipelines), proposing a classification of US cities into

four categories, that is global cities, networking cities, isolated cities and local
cities. Linking these features to the knowledge production performance of the cities

allows for estimating the relative importance of local buzz and global pipelines.

Networking cities showing both a high level of local and global networking exhibit

the highest performance. The volume confirms that external connections indeed are

a vital complementary mechanism to enhance local knowledge production and

diffusion.

Finally, the volume presents new empirical works on the geography of R&D

networks, at a global scale in the form of R&D investment flows between countries

and at a local scale in the form of networks in clusters and regional innovation

systems. At the level of global R&D interactions, specific home- and host-country

characteristics are identified that are conducive or obstructive to cross-border R&D

investment flows of foreign affiliates (see Chap. 10). Using a novel data set on firms

located in different OECD countries, the results point to the pivotal role of geo-

graphical distance, cultural and technological proximity, as well as the availability

of human capital in the host country. Thus, strengthening domestic R&D capabil-

ities and raising tertiary enrolment rates are crucial to attracting international R&D

flows, which may be an important impetus to tap international knowledge sources.

Such policies have also come into practice at the local level, for instance in the

form of so-called competence centres in Austria (see Chap. 19). Such competence

centres are policy-induced platforms for supporting geographically localised net-

working while at the same time stimulating international networking via joint R&D

projects with international partners. In an agent-based simulation of the Vienna Life

Sciences Innovation System, the potential capability of such policy programs to

increase the innovative output of the innovation system is demonstrated. Another

example of policy programmes aiming to induce networking activities is the

German Leading-Edge Cluster Competition (see Chap. 18). It is shown by means

of different SNA measures that the program was quite effective in initiating new

cooperations and in intensifying existing linkages. However, the majority of the

collaborations which are influenced by the program are between local actors.

Furthermore, the results show that small and medium sized enterprises used the

chance to connect with local hubs, but not as much among each other.

20 Synopsis and Outlook 381

http://dx.doi.org/10.1007/978-3-319-02699-2_15
http://dx.doi.org/10.1007/978-3-319-02699-2_16
http://dx.doi.org/10.1007/978-3-319-02699-2_10
http://dx.doi.org/10.1007/978-3-319-02699-2_19
http://dx.doi.org/10.1007/978-3-319-02699-2_18


20.4 A Future Research Agenda

The contribution of the articles presented in this volume to the literature on the

geography of networks and R&D collaborations is substantial and manifold, both in

terms of methodological advancements, as well as novel empirical insights and

policy implications. At the same time, the volume raises urgent questions and issues

for future research endeavours in the short and in the long term. In many aspects,

the articles of this volume represent the starting point for different future research

directions that should be followed.

In concluding from the work presented here, three main future research direc-

tions may be distinguished and summarised as follows: First, further methodolog-

ical considerations on how to use methods from CNA and SNA for the spatial

analysis of R&D networks, for instance for the projection of networks to the

regional level (see Chap. 4), are at the top of the agenda for future research. The

criticisms that mainly local rather than global topological network structures are

considered when analysing relationships between geography and network forma-

tion may be addressed more thoroughly by using the strong portfolio of CNA

instruments such as ERGM (see Chaps. 2, 3 and 4).

Second, a stronger focus on network dynamics is necessary to get a deeper

understanding on how and why spatial arrangements of R&D networks change

over time. Efforts in this direction are partly presented in some articles of the

volume that investigate network structures at different points in time (see for

instance Chap. 8). However, most applied works view the R&D network under

consideration as a static object, where neither new nodes are added nor network

links are created or dissolved (see Chap. 2), i.e. the space-time interdependence in

the observation of network structures is far from explored. From a CNA perspec-

tive, temporal extensions to ERGM for investigating network evolution as a

discrete time Markov process (see, for instance, Hanneke et al. 2010) may be a

promising step to account for network dynamics (see also Chaps. 2 and 12). In an

econometric context, the integration of dynamic panel econometrics in spatial

econometric models, in particular for Spatial Durbin Model (SDM) relationships,

should be applied more extensively (see, for instance, Elhorst 2012).

Third, investigations on the impact of R&D networks need to be further devel-

oped by means of more thorough and precise statistical instruments and, in partic-

ular, by increased integration with information sources on the outcome of networks.

The need for better data on structures and outcome of R&D networks at different

levels of aggregation, in particular the organisational level, is striking. Systemic

evidence on the impact of R&D network structures on network outcome in the form

of new knowledge and knowledge diffusion is still scarce, though some articles

presented here provide some valuable starting points (see Chaps. 16 and 17). A

critical point clearly is the difficulty to identify whether the network structure

implies the outcome or the vice versa (see Chap. 2); the temporal extensions

mentioned above are a crucial element to deal with this causality problem.
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